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 Abstract— Goal: We introduce a novel approach to estimate 
cardiac output (CO) and central systolic blood pressure (cSBP) 
from noninvasive measurements of peripheral cuff-pressure and 
carotid-to-femoral pulse wave velocity (cf-PWV). Methods: The 
adjustment of a previously validated one-dimensional arterial tree 
model is achieved via an optimization process. In the optimization 
loop, compliance and resistance of the generic arterial tree model 
as well as aortic flow are adjusted so that simulated brachial 
systolic and diastolic pressures and cf-PWV converge towards the 
measured brachial systolic and diastolic pressures and cf-PWV. 
The process is repeated until full convergence in terms of both 
brachial pressures and cf-PWV is reached. To assess the accuracy 
of the proposed framework, we implemented the algorithm on in 
vivo anonymized data from 20 subjects and compared the method-
derived estimates of CO and cSBP to patient-specific 
measurements obtained with Mobil-O-Graph apparatus (central 
pressure) and two-dimensional transthoracic echocardiography 
(aortic blood flow). Results: Both CO and cSBP estimates were 
found to be in good agreement with the reference values achieving 
an RMSE of 0.36 L/min and 2.46 mmHg, respectively. Low biases 
were reported, namely -0.04±0.36 L/min for CO predictions and -
0.27±2.51 mmHg for cSBP predictions. Significance: Our one-
dimensional model can be successfully “tuned” to partially 
patient-specific standards by using noninvasive, easily obtained 
peripheral measurement data. The in vivo evaluation 
demonstrated that this method can potentially be used to obtain 
central aortic hemodynamic parameters in a noninvasive and 
accurate way. 
 
Index Terms—noninvasive, cardiac output, central pressure, 1-D 
model, patient-specific models, optimization methods. 
 

I. INTRODUCTION 
ENTRAL hemodynamic quantities, such as cardiac output 
(CO) and central aortic pressure, have been generally 
shown to be more powerful predictors of clinical outcomes 

than corresponding measurements obtained in the peripheral 
arteries such as the radial, femoral or brachial arteries [1], [2]. 
Critically ill or intensive care unit patients often require 
continuous assessment of cardiac output for diagnostic 
purposes or for guiding therapeutic interventions [3]–[5], 
whereas several studies have shown the pathophysiological 

 
This paragraph of the first footnote will contain the date on which you 

submitted your paper for review. It will also contain support information, 
including sponsor and financial support acknowledgment. For example, “This 
work was supported in part by the U.S. Department of Commerce under Grant 
BS123456.”  

The next few paragraphs should contain the authors’ current affiliations, 
including current address and e-mail. For example, F. A. Author is with the 

importance of central systolic blood pressure (cSBP) as the 
critical index for diagnosis and preventing cardiovascular 
diseases [6]–[8]. But despite the diagnostic importance of 
central measurements, their clinical use is severely hampered 
by their invasive nature (in case of central pressure) or cost and 
need of special equipment and training (in case of aortic blood 
flow). Peripheral measurements such as systolic and diastolic 
brachial pressure, on the other hand, are noninvasive and can be 
monitored by any clinician on a regular basis [9]. This has given 
rise to substantial research efforts to develop noninvasive 
methods for estimating central cardiovascular hemodynamics 
from peripheral measurements [10], [11].  

The state-of-the-art of methods for obtaining central 
hemodynamic indices is based on generalized transfer functions 
(TF) [12]–[14], pulse wave analysis [15]–[17] or parameter 
estimation from pooled clinical data [18], [19]. None of these 
techniques accounts for the specific arterial tree properties of 
each subject [20], [21]. The use of mathematical models 
constitutes a valuable tool to investigate patient-specific aspects 
of aortic hemodynamics, which are difficult to assess in clinical 
practice. Patient-specific modeling is an emerging field which 
promises to have a significant impact on clinical practice [22]. 
Data assimilation has significantly promoted patient-specific 
modeling and has become an area of increasing interest [23], 
[24]. 

Prompted by previous work in the field, the hypothesis 
formed in this study is that central hemodynamic parameters 
(i.e., CO and cSBP) can be accurately estimated by making 
better use of the patient-specific information that is embedded 
in easily obtained noninvasive peripheral cuff-pressure and 
pulse wave velocity measurements. In contrast to current 
methods using population-based generalized TFs, this study 
relies on a generalized one-dimensional (1-D) model which is 
further partially personalized by using additional measurements 
of brachial systolic blood pressure (SBP) and diastolic blood 
pressure (DBP), and carotid-to-femoral pulse wave velocity (cf-
PWV). The method developed and presented in this manuscript 
combines insights from both cardiovascular modeling and data 
assimilation methodology. This is done by feeding the 1-D 
model with the minimum number of inputs that allows for the 
calibrated prediction of the aforementioned central 
hemodynamic parameters. The proposed framework was 
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evaluated with in vivo data from a population of 20 healthy 
adults [25]. Estimated values of CO and cSBP were compared 
to the corresponding CO and cSBP values measured by a 
noninvasive, validated, automated, oscillometric 
sphygmomanometer (Mobil-O-Graph) and transthoracic two-
dimensional (2-D) echocardiography – Doppler, respectively. 

II. METHODS AND MATERIALS 

A. Brief Description of the Generic 1-D Arterial Tree Model 
In this study, we adopted a validated  1-D model of the 

systemic arterial tree that has been previously described by 
Reymond et al. [26]. The arterial tree, as depicted in Fig. 1, 
includes the main arteries of the systemic circulation, including 
a detailed network representation of the cerebral circulation and 
the coronary circulation. In brief, the governing equations of the 
model are obtained by integration of the longitudinal 
momentum and continuity of the Navier-Stokes equations over 
the arterial cross section. Flow and pressure waves throughout 
the vasculature are obtained by solving the governing equations 
with proper boundary conditions using an implicit finite-
difference scheme. The arterial segments of the model are 
considered as long tapered tubes, and their compliance is 
defined by a nonlinear function of pressure and location as 
proposed by Langewouters [27]. The arterial wall behavior is 
considered to be nonlinear and viscoelastic according to 
Holenstein et al. [28]. Local arterial compliance is calculated 
after approximating pulse wave velocity (PWV) as an inverse 
power function of arterial lumen diameter, following the 
physiological values reported in the literature. Resistance of the 
peripheral vasculature is accounted for by coupling the distant 
vessels with three-element Windkessel models. At the proximal 
end, the arterial tree either receives a prescribed input aortic 
flow waveform or is coupled with a time-varying elastance 
model for the contractility of the left ventricle [29], [30]. 
Further details on the 1-D model can be found in the original 
publications [22], [26]. 

The model has been thoroughly validated [22], [26] and is 
able to predict pressure and flow waves in good quantitative and 
qualitative agreement with in vivo measurements, particularly 
with respect to shape and wave details. 

B. Rationale of The Proposed Method 
This work applied an optimization algorithm in order to 

partially adjust the generic 1-D arterial tree model to the 
specific patient under consideration. The rationale behind this 
methodology was that adjusting (some of the) model 
parameters may be sufficient to approximate the measured data 
[31]. Before the optimization, the aim was to identify the most 
sensitive parameters which mainly drive the variability of the 
model output. 

In our analysis, peripheral SBP, DBP, and cf-PWV were the 
model outputs. Our approach was based on the idea that, for any 
individual with a given set of peripheral SBP, DBP, and cf-
PWV values, there will be only one solution for the arterial tree 
model. Thus, if we simultaneously adjust the properties of the 
model and the input aortic blood flow to capture a given 
peripheral cuff-pressure and cf-PWV, then this allows for the 
calibrated derivation of CO and cSBP. In order to identify and 
select those highly sensitive parameters, we performed a 
parameter identifiability analysis [32]. 

C. Parameter Identifiability Analysis  
The arterial tree model of this study is fully characterized by 

its geometry, the distensibility of all arterial segments, and the 
peripheral impedances (described by terminal compliances and 
resistances). Additionally, aortic flow is needed as proximal 
boundary condition. Table I summarizes the input and output 
parameters of the arterial tree model. For the following analysis, 
brachial pressure was selected as the peripheral pressure model 
output. Thus, the three model outputs became brachial SBP 
(brSBP), brachial DBP (brDBP), and cf-PWV. 

The sensitivity matrix 𝐕 = {𝐯𝐢𝐣} was calculated for the entire 
set of parameters in the arterial tree model using the finite 
difference approximation [33]. Subsequently, the scaled 
sensitivity matrix was estimated to provide the dimension-free 
sensitivity information. The scaled sensitivity matrix 𝐒 = {𝐬𝐢𝐣} 
was derived from the following formula: 

 
𝐬𝐢𝐣 =

𝐯𝐢𝐣𝚫𝛉𝐣
𝐒𝐂𝐢

 . 

 
Fig. 1.  Schematic representation of the model of systemic circulation 
developed by Reymond et al. [26]. (A) Main systemic arterial tree. (B) Detail 
of the aortic arch and the coronary network. (C) Detail of the principal 
abdominal aorta branches. (D) Blown-up schematic of the detailed cerebral 
arterial tree, which is connected via the carotids (segments 5 and 15) and the 
vertebrals (segments 6 and 20) to the main arterial tree shown in (A). 
  

TABLE I 
INPUT AND OUTPUT PARAMETERS OF THE 1-D ARTERIAL TREE MODEL 

 Corresponding 
variable Value 

Input 
parameter   

Blood density ρ 1050 kg/m 

Blood viscosity µ 0.004 Pa.s 

Geometry arterial_length, 
arterial_diameter 

(no_segments)x1 vector, 
(no_segments)x1 vector 

Distensibility 
and terminal 
compliance  

C (no_segments)x1 vector 

Total peripheral 
resistance R (no_terminal_segments)x1 vector 

Aortic flowa aortic_flow  (no_time_points)x1 vector 

   

Output   

Pressure waves pressures (no_segments)x(no_time_points) 
vector 

Flow waves flows (no_segments)x(no_time_points) 
vector 

aThe aortic flow is characterized by three points, namely the Qmax, Tperiod, 
Tsystole). The aortic flow wave shape is considered fixed. no_segments: number 
of arterial segments, no_time_points: length of the time signal.  
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Here, according to Brun et al. [32], 	𝚫𝛉𝐣  was set equal to the 
original set of parameters 𝛉, i.e., 𝛉𝟎, whereas the optimal choice 
for 𝐒𝐂𝐢  was the mean value of the experimental observations 
for each model output (Table II).  

The scaled sensitivity matrix is presented below in Fig. 2. 

Each element 𝐬𝐢𝐣 corresponds to the sensitivity of the model 
output j = 1, 2, 3, i.e., brSBP, brDBP, and cf-PWV, with respect 
to changes in the parameter i = 1,…,7, i.e., arterial length, 
arterial diameter, C, R, Tperiod, Tsystole, Qmax. 

In order to acquire additional information on the sign and 
distribution of the values in each column 𝐣, 𝛅𝐣

𝐦𝐬𝐪𝐫 [32] was 
computed and ranked in decreasing order. The decreasing order 
of 𝛅𝐣

𝐦𝐬𝐪𝐫 gave the parameters’ importance ranking [32] (Table 
III). It was observed that Qmax, C, Tperiod and R are considered 
the most sensitive parameters. Since the sensitivities of the rest 
parameters are not negligible, we chose to approximate them 
using previously published data (more details are provided in 

the D. Tuning of The Generic 1-D Arterial Tree Model section). 
We assumed that the approximations do not impose a 
significant error in the results due to their small sensitivities. 

Based on the aforementioned considerations and the resulted 
importance ranking, we partitioned the set of parameters θ into 
two components (𝛉𝐊𝐓, 𝛉𝐊7

𝐓) with	𝐊 = 𝟑, namely:  
 

𝛉𝐊𝐓 = { C, R, Qmax } , 
 

𝛉𝐊7
𝐓 = {arterial_length, arterial_diameter, Tperiod, Tsystole } . 

 
Only the component 𝛉𝐊𝐓 was to be estimated from the 

measured data whereas the component 𝛉𝐊7
𝐓 (i.e., the remaining 

parameters) was fixed at a priori value; this is a common 
practice in identifiability analysis [32]. Concretely, 
arterial_length was adjusted based on height information, 
arterial_diameter was determined based on [34], Tperiod was 
directly assigned the patient’s measured HR and Tsystole was set 
to a HR-related value according to [35]. The hypothesis was 
that the subset of parameters, i.e., compliance (C), total 
peripheral resistance (R), and maximum flow (Qmax), can be 
uniquely estimated from the model outputs, i.e., brSBP, brDBP, 
and cf-PWV.  

In order to verify our hypothesis, we had to confirm that the 
set 𝛉𝐊𝐓 was identifiable or, in other words, that 𝛉𝐊𝐓 was sufficient 
to detect the variability in the model output (i.e., brSBP, brDBP, 
and cf-PWV). If 𝛉𝐊𝐓  is classified as identifiable, then we can 
deduce that brSBP, brDBP, and cf-PWV can estimate 𝛉𝐊𝐓 in a 
unique way.  

The joint influence of the parameters 𝛉𝐊𝐓 parameters on the 
model output was considered. To this respect, 
the collinearity of parametric sensitivity was used [32]. To 
calculate collinearity, we first normalized the scaled 
sensitivities 𝐒9 and we defined the collinearity index γΚ as 
follows: 

 
𝛄𝐊 =

𝟏
𝐦𝐢𝐧=|𝐛|=@𝟏|=𝐒𝐊A𝛃=|

= 𝟏
C𝛌𝐊

, 

 
where 𝐒𝐊A is the submatrix of the normalized sensitivity matrix 
that consists of the columns that correspond to 𝛉𝐊𝐓, and 𝛌𝐊 is the 
smallest eigenvalue of 𝑺𝑲𝑻A𝐒𝐊A [32], [36].  
 According to Brun et al. [32], a subset of parameters can be 
classified as identifiable if the collinearity index γΚ is smaller 
than 20. In our analysis, γΚ was found to be equal to 6.90 and 
thus, we deduced that there is a unique solution of model 

TABLE II 
DESCRIPTION OF ΔΘJ AND SCI  PARAMETERS 

Parameter Unit Δθj = θ0 

Qmax mL/s 436.23 

C  mL/mmHg 1.90 

Tperiod ms 790.00 

R mmHg.s/mL 1.00 

arterial_lengtha  cm 180.00 

arterial_diameterb cm 2.94 

Tsystole ms 270.00 

   

State Unit SCi 

Peripheral SBP mmHg 117.55  

Peripheral DBP mmHg 77.25  

Cf-PWV m/s 6.89 
aArterial length is defined with respect to height. The reference state of the 
arterial tree model corresponds to an individual with a height equal to 180 
cm. bArterial diameter is defined with respect to the diameter of the aorta. 
The alteration of the diameter for the different arteries is done uniformly.  

TABLE III 
PARAMETER IMPORTANCE RANKING 

Parameter 𝛅𝐣
𝐦𝐬𝐪𝐫

   

Qmax 0.52 

R  0.48 

Tperiod 0.42 

C 0.26 

Tsystole  0.11 

arterial_diameter 0.10 

arterial_length 0.08 

 

 

 
Fig. 2.  The scaled sensitivity matrix for the entire set of parameters in the 1-
D arterial tree model. 
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parameters for a given set of model outputs (i.e., brSBP, brDBP, 
and cf-PWV). 

D. Tuning of the Generic 1-D Arterial Tree Model 
After proving the validity of our primary hypothesis, the 

following step was to find the adjusted input model parameters 
that produce as output the given measured data (i.e., brachial 
SBP and DBP, and cf-PWV). In this respect, the global 
compliance and global peripheral resistance of the entire 
arterial tree as well as the input aortic flow were adjusted. This 
was done by multiplying the compliance of each arterial 
segment by a common scaling factor. Similarly, a different 
scaling factor was used to adjust all peripheral resistances. 
Finally, Qmax was modified by multiplication with a third 
scaling factor. An optimization algorithm was employed to 
derive the optimal distensibility, resistance and aortic flow 
scaling factors. Once the “tuning” was completed, the 1-D 
model used the adjusted parameters and produced the flow and 
pressure waves for every segment of the arterial tree. From the 
solution, we were able to obtain the flow and pressure at the 
aorta, namely to compute the CO and cSBP.  

In this approach, the distensibility and the terminal 
compliance (C) of each arterial segment were modified in a 
uniform way for young individuals. For older or hypertensive 
subjects, stiffening was considered as nonuniform and more 
pronounced in the proximal aortic path [37]. The importance of 
age-related nonuniform aortic stiffening for central 
hemodynamics and wave reflections has been demonstrated in 
previous studies [38]. In order to account for this, data for the 
age-related local nonuniform aortic stiffening were obtained 
from [39]. The nonuniform stiffening of the aorta was 
considered by changing the relative regional distensibility of 
the proximal aorta (segments 1-95-2-14-18-27 of the arterial 
tree in Fig. 1) through multiplication with an age-related 
proximal factor (Fig. 3). Therefore, two scaling factors were 
considered: a global scaling factor multiplied with all arterial 
compliances and a proximal scaling factor that was additionally 
multiplied with only the compliance of the proximal aorta. This 
was to satisfy the relative relation between the proximal 
distensibility and the peripheral distensibility. Fig. 3 reports the 

scaling factors with respect to age. The goodness of fit was high 
with a coefficient of determination, R2, equal to 0.99. 
 

Resistance (R) was altered in a uniform way for all terminal 
vessels in the model. Aortic flow was prescribed as an 
uncalibrated generic physiological wave, which was scaled 
with respect to amplitude and time during the adjustment 
process. The geometry of the arterial vessels (i.e., 
arterial_length and arterial_diameter) was adjusted based on the 
age, gender, height, and body surface area (BSA) of each 
subject. For this purpose, data which associate aortic diameter 
size with age, gender and BSA were used from previous studies 
[34]. The length of the generic arterial tree segments was 
normalized and, subsequently, was multiplied by a scaling 
factor so as to be adjusted to the height of each subject. This 
concept was implemented in an iterative optimization process. 
The reason for employing an optimization process was to avoid 
searching the entire input model parameters space. 

E. Optimization Process 
A schematic representation of the optimization algorithm is 

shown in Fig. 4. In the first optimization iteration the structure 
of the algorithm was as follows: an uncalibrated generic aortic 

 
Fig. 4.  Schematic representation of the optimization process for predicting noninvasive cardiac output and central systolic blood pressure. brSBP: 
brachial systolic blood pressure, DBP: brachial diastolic blood pressure, cf-PWV: carotid-to-femoral pulse wave velocity, CO: cardiac output, 
cSBP: central systolic blood pressure. 
 
 
 
  

 

 
Fig. 3.  The proximal scaling factor with respect to age for adjusting the 
relative distensibility of the proximal aorta.  
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flow curve was used as initial input to the model (Fig. 5). For 
the generic uncalibrated aortic flow, an “average” 
physiologically shaped wave was selected. The scaling was 
performed based on the adjustment of three characteristic 
values, i.e., the velocity peak (Qmax), time period (Tperiod), and 
systolic duration (Tsystole) (Fig. 5). The Tperiod of the uncalibrated 
aortic wave was adjusted with respect to the measured HR. 
Previously published data on the HR-related changes in systolic 
duration [35] were used to adapt the Tsystole with respect to the 
given HR.  Therefore, only Qmax remained to be optimized. A 
random Qmax, and therefore SV, was selected for the initial 
aortic flow input.  The 1-D model subsequently computed all 
flows and pressures throughout the arterial tree, including the 
measured variables (brachial SBP and DBP, cf-PWV) as well 
as the unknown quantities of interest (CO, cSBP). The model 
was expected to produce an inaccurate prediction of flows and 
pressures due to inaccurate model parameters and the 
inaccurate input aortic flow for the specific subject under 
investigation. Similarly, the calculated cf-PWV was likely not 
the same as the measured cf-PWV. To address this issue, the 
noninvasive, patient-specific measurements were integrated 
into the model using a gradient-based optimization algorithm. 
The reference compliance, resistance and Qmax of the generic 
arterial tree were adjusted by multiplication with different 
scaling factors until brachial SBP, DBP, and cf-PWV were 
correctly predicted for the uncalibrated input aortic flow (Fig. 
5). Scaling factors for the compliance were chosen so that a 
range of [0.1, 3.8] mL/mmHg was covered for total arterial 
compliance. These values correspond to an extensive range of 
arterial tree stiffness values [27], [40]. The reference total 
peripheral resistance in the model was 1 mmHg.s/mL. The 
scaling factor (which was multiplied with the reference 
resistance) varied within [0.40, 2.00] in order to cover normal 
values of total peripheral resistance (e.g., [0.40, 2.00] 
mmHg.s/mL) [41]. For scaling Qmax, the scaling factors were 
chosen so as the corresponding cardiac output is within [2.00, 
8.00] L/min [42]. The limits were chosen so that the 
corresponding quantities as well as the pressure and flow values 
generated by the arterial tree model comply with physiological 
hemodynamic conditions. It is to be emphasized that all 
parameter ranges were wider than what is to be physiologically 
expected, in order provide the optimization algorithm with 
sufficient solution space.  The optimization loop ran and the 
process was repeated until convergence in terms of both 
brachial pressure and cf-PWV was reached. The tolerated error 

for capturing brachial SBP and DBP was set to 0.01 %, whereas 
for cf-PWV value it was 0.01 %. A maximum number of 
iterations (NIJKLMNO = 100) was also defined for each optimization 
process. If the algorithm did not converge, the process was 
repeated starting from a different initial solution. In order to 
ensure that the algorithm was not stalled by a local minimum, 
several runs starting from a different random initial solution 
were performed.  

F. Model-derived Pulse Wave Velocity 
PWV was derived using the tangential method [43]. The 

method uses the intersection point of two tangents on the 
arterial pressure wave as a characteristic marker. The first 
tangent is defined as the line that passes tangentially through 
the initial systolic upstroke, i.e., the maximum of the first 
derivative. The second tangent line is the horizontal line passing 
through the minimum pressure point. Since our cohort study 
consists of cf-PWV data, the method was applied to estimate 
the pulse transit time (PTT) between the carotid artery and the 
femoral artery. Total aortic length was determined by 

 

 
Fig. 5.  Uncalibrated generic aortic flow waveform that is used as input to the 
1-D arterial tree solver. 
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summation of the lengths of the arterial segments within the 
transmission path, i.e., the relevant carotid-to-femoral path 
(segments 5-3-2-14-18-27-28-35-37-39-41-42-44 of the 
generic arterial tree in Fig.1). Finally, the value of cf-PWV was 
calculated by dividing the total length by the PTT.  

III. MEASUREMENT PROTOCOL 
A preliminary assessment of the proposed methodology was 

carried out by testing the predictions of the method against in 
vivo data previously collected by Papaioannou et al. [25]. The 
study population included twenty-four subjects who were 
referred for noninvasive cardiovascular risk assessment. 
Subjects with risk factors or those receiving medication were 
also enrolled. Patients with aortic valve disease or arrhythmias 
were excluded. The measurement protocol has been approved 
by the Scientific Board of Laikon General Hospital (Reference 
no: E53610/7/2013).  

For each subject, brachial pressure waves were recorded at 
the brachial artery by oscillometric sphygmomanometry using 
the Mobil-O-Graph device (I.E.M. GmbH, Stolberg, 
Deutschland) [44], [45]. Central pressure waves were extracted 
by mathematical transformation of brachial pressure waves 
[46]. Carotid-to-femoral pulse wave velocity (cf-PWV) was 
computed using the SphygmoCor apparatus (AtCor Medical 
Pty Ltd, West Ryde, Australia). Pressure waves were recorded 
at the carotid and femoral artery by applanation tonometry 
(Millar SPT-301, Millar Instruments, TX, USA) as previously 
described [25]. SphygmoCor also provided recordings of the 
radial pressure waves [47] and was subsequently used for 
acquiring the aortic pressure waves [48] through the use of a 
generalized transfer function. Despite the fact that both devices 
yield equally precise estimates, in the analysis we made use of 

the data measured with the Mobil-O-Graph in order to ensure 
that brachial and aortic pressure were recorded simultaneously. 
Concretely, the brachial pressure data were used as input 
variables to the method and the corresponding central pressure 
data, measured using the same device, were used for the 
validation. Nevertheless, for the sake of completeness of this 
work, a second analysis using the SphygmoCor-derived 
pressure data was performed. 

Two measurements of the aortic peak velocity profile at the 
ascending aorta were performed via transthoracic two-
dimensional echocardiographic examination [25]. For this 
study’s simulations, the average of the two measured signals 
was used. Aortic diameters were extracted from Doppler M-
mode and CO was computed by applying the Witzig-
Womersely theory [49] considering the profile of peak velocity. 
Cross-sectional area was assumed to be constant.  

All the recorded waveforms were exported as raw data and 
subject to additional preprocessing. For further details on the 
measurements protocol, the reader is referred to the original 
publication [25]. 

IV. VALIDATION OF THE METHOD-DERIVED ESTIMATIONS 
Out of the 24 subjects, four were excluded from the study due 

to unreliable or insufficient data. The population samples 
included both women (n=9) and men (n=11) and covered an age 
range of 38.1±12.6 years. For each subject, the processed data 
from the recordings were used and the previously described 
methodology was adopted. The descriptive values of the 
hemodynamic parameters and clinical characteristics of the 
study population (n=20) are reported in Table IV. 

We first implemented the method using as input the 
peripheral pressure data from the Mobil-O-Graph device. The 

TABLE IV 
DESCRIPTIVE HEMODYNAMIC PARAMETERS AND CLINICAL CHARACTERISTICS OF THE STUDY POPULATION (N=20) 

Index min max mean SD min max mean SD 

 Women (n=9) Men (n=11) 

Age (years) 27.00 61.00 36.25 11.30 23.00 70.00 39.83 15.30 
Height (cm) 152.00 178.00 165.67 8.43 170.00 192.00 179.91 6.93 

Weight (kg) 49.00 80.00 61.89 12.17 71.00 128.00 92.27 17.70 

Central SBP (mmHg) 93.00 117.00 103.11 8.24 99.00 136.00 117.45 10.71 

Brachial SBP (mmHg)  98.00 121.00 110.00 8.05 107.00 145.00 123.73 10.77 

Brachial DBP (mmHg) 60.00 81.00 70.67 6.24 74.00 98.00 82.64 7.61 
Brachial PP (mmHg) 32.00 46.00 39.33 4.33 33.00 52.00 41.09 5.86 

MAP (mmHg)  72.67 94.00 83.78 6.59 85.00 110.33 96.33 8.34 

Mean aortic flow (L/min)  3.00 5.40 4.24 0.74 3.00 6.20 4.41 1.01 

HR (bpm) 51.00 84.00 70.11 10.40 51.00 89.00 71.45 10.88 
cf-PWV (m/s) 5.25 9.05 6.11 1.17 5.40 11.25 7.53 2.21 

Smoking (%) 44.44  63.64 

Diabetes (%) 0.00  18.18 

Hypertension (%) 0.00 36.36 

Dyslipidemia (%) 0.00 36.36 
Renal disease (%) 0.00 9.09 

CVD (%) 0.00 36.36 

Stroke (%) 0.00 9.09 

History of CVD (%) 44.44 9.09 

   SBP: systolic blood pressure, DBP: diastolic blood pressure, PP: pulse pressure, MAP: mean arterial pressure, HR: heart  
   rate, cf-PWV: carotid-to-femoral pulse wave velocity, CVD: cardiovascular disease. 
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model CO estimates were compared to the in vivo 
measurements via transthoracic echocardiography, whereas the 
predicted cSBPs were evaluated against the respective Mobil-
O-Graph central pressure data.  

Then, the process was repeated using as input the peripheral 
pressure data from SphygmoCor. Similarly, COs were validated 
using as reference the transthoracic echocardiographic data and 
cSBP predictions were compared versus the in vivo 
measurements from the respective SphygmoCor-derived 
central pressure data.  

V. STATISTICS 
The agreement, bias and precision between the method-

derived predictions and the in vivo data were evaluated by using 
the Pearson’s correlation coefficient (r), intraclass correlation 
coefficient (ICC), the Bland-Atman analysis and the root mean 
square error (RMSE). The statistical analysis was performed 
using the software package Prism (Prism 6, GraphPad Software 
Inc., San Diego, USA).  

VI. SENSITIVITY TO MEASUREMENT ERRORS 
In order to assess the sensitivity of the method to errors in the 

measurements of brachial pressure and the cf-PWV, the 
analysis was repeated on the entire study population after (i) 
decreasing the brachial systolic blood pressure with 10 % and 
(ii) increasing the brachial systolic blood pressure with 10 %.   
In a similar approach, the effect of overestimating and 
underestimating the cf-PWV value with 10 % was also 
examined.  

VII. RESULTS 
The comparisons between the model-derived estimations and 

the reference data are presented below. 

A. Comparison of Model-derived CO Estimates to the 
Reference Method  

Fig. 6A shows the comparison between the model CO 
estimates and the in vivo measurements via transthoracic 
echocardiography using the pressure data from the Mobil-O-
Graph device. The corresponding Bland-Altman plot is 
depicted in Fig. 6B. The RMSE was found to be equal to 0.36 
L/min. In 55 % of the cases, the difference between model-CO 
and reference CO was found to be below 0.3 L/min. Parameters 
of accuracy, correlation and agreement of CO estimation by the 
method in comparison to the reference method are summarized 
in Table V.  

Fig. 7A shows the model-predicted CO values compared to 
the in vivo echocardiographic CO values using the 
SphygmoCor pressure data. The Bland-Altman plot is given in 
Fig. 7B. The RMSE was 0.81 L/min and the Pearson’s 
correlation coefficient was equal to 0.73 (Table V). The 
difference between model-CO and reference CO was less than 
0.3 L/min for the 25 % of the cases. 
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B. Comparison of Model-derived cSBP Estimates to the 
Reference Method 

The scatterplot between the noninvasive cSBP predictions 
versus the in vivo measurements from the Mobil-O-Graph is 
presented in Fig. 8A. The method yielded an accurate 
estimation of cSBP, with a RMSE of 2.46 mmHg, a Pearson’s 
correlation coefficient of 0.98 and a high ICC of 0.98. The 
Bland-Altman analysis, as given in Fig. 8B, showed a good 
agreement between the model and the reference cSBP values.  
The difference between model-cSBP and reference cSBP was 
less than 1.5 mmHg for the 30 % of the cases, whereas in 60 % 
of them it ranged between 1.5 and 3.5 mmHg and only 10 % 
exceeded the 3.5 mmHg. Parameters of precision, correlation 
and agreement between the estimates and the real values are 
reported in Table VI.  

 
Fig. 6.  Comparison of CO values as predicted by the method with the 
reference in vivo data (using the Mobil-O-Graph pressure data). (A) 
Scatter plot between the values of CO derived from the method and the 
values of CO measured with 2-D transthoracic echocardiography (solid 
and dashed line represent equality and linear regression, respectively). 
(B) Bland-Altman plot for CO prediction by the model versus 2-D 
transthoracic echocardiographic measurement. Limits of agreement 
are defined by the two horizontal dotted lines. 
  

TABLE V 
PARAMETERS OF ACCURACY, CORRELATION AND AGREEMENT OF CO 

ESTIMATION BY THE MODEL IN COMPARISON TO THE REFERENCE METHOD 

Parameter 
Value 

(using the Mobil-O-Graph 
pressure data) 

Value 
(using the SphygmoCor 

pressure data) 
Mean difference 
(L/min) 0.04 0.04 

Standard deviation of 
difference (L/min) 0.36 0.83 

Limits of agreement 
(L/min) [-0.68, 0.75] [-1.61, 1.71] 

Root mean square error 
(L/min) 0.36 0.81 

Pearson’s correlation 
coefficient 0.91 0.73 

Intraclass correlation 
coefficient 0.91 0.69 

 

 
Fig. 7.  Comparison of CO values as predicted by the method with the 
reference in vivo data (using the SphygmoCor pressure data). (A) Scatter 
plot between the values of CO derived from the method and the values of 
CO measured with 2-D transthoracic echocardiography (solid and dashed 
line represent equality and linear regression, respectively). (B) Bland-
Altman plot for CO prediction by the model versus 2-D transthoracic 
echocardiographic measurement. Limits of agreement are defined by the two 
horizontal dotted lines. 
  

 

 
Fig. 8.  Comparison of cSBP values as predicted by the model with the 
reference in vivo data (using the Mobil-O-Graph pressure data). Scatter plot 
between the values of cSBP derived from the model and the values of cSBP 
measured with Mobil-O-Graph (solid and dashed line represent equality and 
linear regression, respectively).  (B) Bland-Altman plot for cSBP prediction by 
the model versus in vivo measurement using the Mobil-O-Graph device. Limits 
of agreement are defined by the two horizontal dotted lines. 
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 Fig. 9A shows the cSBP predictions compared to the in vivo 
SphygmoCor cSBP values. The Bland-Altman plot is presented 
in Fig. 9B. The RMSE was calculated to be 3.42 mmHg and the 
Pearson’s correlation coefficient was equal to 0.98 (Table VI). 
For 20 % of the cases, the difference between model-cSBP and 
reference cSBP was less than 1.5 mmHg, for 40 % of them it 
ranged between 1.5 and 3.5 mmHg and for the remaining 40 % 
it was found to be above 3.5 mmHg. 

C. Sensitivity of Model Predictions to Input Parameter 
Measurement Errors 

Table VII shows the sensitivity of the model predictions in 
terms of CO and cSBP when a ±10% error is introduced in the 
measurements of brachial SBP and cf-PWV.  

In case of an overestimation of the brachial SBP, it was noted 
that CO and cSBP estimates were sensitive to the erroneously 
measured brachial SBP with relative (with respect to the actual 
value) errors of 26.76±17.01 % and 8.98 ±5.45 %, respectively. 
When an underestimation of the brachial SBP was assumed, the 
errors in CO and cSBP were calculated to be -20.67±18.11 % 
and -11.88±4.28 %, respectively.  

Likewise, a deliberate error of ±10% was imposed to the cf-
PWV measurement. The algorithm was reemployed for the new 
input. The cSBP prediction seems to be more robust to errors in 
cf-PWV measurements than to errors in brachial blood pressure 
measurements (Table VII).  A ±10 % error in the in vivo cf-
PWV rendered small errors in the cSBP estimations, equal to -
4.34±4.41 % and -3.74±4.03 %, respectively. Relatively higher 
deviations of -12.73±6.23 % and 11.84±9.56 % were reported 
for the CO estimates. 

VIII. DISCUSSION 
In the present study, we implemented and assessed a novel 

method for predicting cardiac output and central systolic blood 
pressure based on noninvasive measurements of peripheral 
(brachial) pressure and pulse wave velocity. The method is 
based on the adjustment of a generic 1-D arterial model using 
the noninvasive recordings of the peripheral cuff-based systolic 
and diastolic blood pressures and carotid-to-femoral pulse wave 
velocity, which are easily obtained in a clinical setting. The one-
dimensional model of the arterial tree, which has been 
thoroughly validated in vivo [22], [24], provides realistic flow 
and pressure waveforms. An optimization process was 
developed in order to fuse the computational model with the 
measurement data. We adjusted arterial model parameters such 
that model predictions fit the noninvasive recordings and thus, 
hopefully, render the generic model closer to a patient-specific 
model. This study demonstrated that creating a version of the 
generalized CV model closer to each patient’s standards can 
potentially enhance the performance of the CO and cSBP 
prediction. 

TABLE VII 
ESTIMATES OF RELATIVE ERRORS IN CO AND CSBP AFTER INTRODUCING: 

(I) A ±10 % ERROR IN THE BRACHIAL SBP MEASUREMENT AND (II) A ±10 % 
ERROR IN THE CF-PWV MEASUREMENT 

 

Introduced error CO estimate error (%) 
mean±SD 

cSBP estimate error (%) 
mean±SD 

+10 % brSBP  26.76±17.01 8.98±5.45 

-10 % brSBP -20.67±18.11 -11.88±4.28 

+10 % cf-PWV -12.73±6.23 -4.34±4.41 

-10 % cf-PWV 11.84±9.56 -3.74±4.03 

brSBP: brachial systolic blood pressure, cf-PWV: carotid-to-femoral pulse 
wave velocity, CO: cardiac output, cSBP: central systolic blood pressure, 
SD: standard deviation. 
 

TABLE VI 
PARAMETERS OF ACCURACY, CORRELATION AND AGREEMENT OF CSBP 

ESTIMATION BY THE MODEL IN COMPARISON TO THE REFERENCE METHOD 

Parameter 
Value 

(using the Mobil-O-Graph 
pressure data) 

Value 
(using the SphygmoCor 

pressure data) 
Mean difference 
(mmHg) -0.27 0.82 

Standard deviation of 
difference (mmHg) 2.51 3.41 

Limits of agreement 
(mmHg) [-5.19,4.65] [-5.75,7.58] 

Root mean square error 
(mmHg) 2.46 3.42 

Pearson’s correlation 
coefficient 0.98 0.98 

Intraclass correlation 
coefficient 0.98 0.97 

 

 
Fig. 9.  Comparison of cSBP values as predicted by the model with the reference 
in vivo data (using the SphygmoCor pressure data). Scatter plot between the 
values of cSBP derived from the model and the values of cSBP measured with 
SphygmoCor (solid and dashed line represent equality and linear regression, 
respectively).  (B) Bland-Altman plot for cSBP prediction by the model versus 
in vivo measurement using the SphygmoCor device. Limits of agreement are 
defined by the two horizontal dotted lines. 
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Patient-specific models of the human vasculature are 
confronted with significant challenges that pertain to the unique 
characteristics of each individual. Geometry, in particular, 
cannot be completely defined for each arterial segment 
throughout the vasculature. In this study, the geometry of an 
individual was approximated by using data from a previously 
published study [34]. These data allowed for an estimation of 
the aortic size without the need for additional complicated or 
costly measurements. As anticipated, the aortic size 
approximation slightly deviated from the actual aortic 
dimension. However, having at our disposal the aortic diameter 
values (directly measured from echocardiography), we 
observed that the approximated diameter of the ascending aorta 
did not differ significantly from the true measured values (the 
difference was equal to 0.25±0.44 cm). 

Peripheral noninvasive measurements proved to be adequate 
to adjust the arterial tree model and were demonstrated to be 
informative to predict aortic hemodynamics. CO and cSBP 
estimates were found to be in good agreement with the 
reference methods. Fig. 10 shows an aortic pressure waveform 
as resulted from the 1-D model. The model-derived aortic 
pressure wave bears all the characteristic details and shape of a 
physiological pressure signal. This observation further 
strengthens the physiological relevance of our results. To our 
knowledge, this novel work constitutes the first method that 
makes use of only three easily obtained inputs (e.g., 
noninvasive brSBP and brDBP, and PWV) to successfully 
adjust a 1-D generic arterial tree model and accurately predict 
hemodynamics at the aortic root (e.g., CO, cSBP). The fusion 
of clinically relevant noninvasive data with theory-based 
modeling avoids simplified assumptions that have been 
proposed by previous studies [18], [50]. Additionally, it should 
be noted that the clinical application of the proposed framework 
is highly facilitated by the fact that PWV can be routinely 
measured in clinical practice and has been identified as an 
independent predictor of cardiovascular disease [51]–[53], 
especially when it can be translated in conjunction with 
pressure measurements.  

We performed an identifiability analysis as proposed by Brun 
et al. in order to identify the most sensitive parameters that drive 
the variability in the model output (i.e., brSBP, brDBP, and cf-
PWV). This analysis can be very informative to guide the 
strategy for inverse problem-solving. The sensitivity matrix 
demonstrated that Qmax was the most sensitive determinant of 
the model output, which may be explained from the fact that 
aortic flow serves as the proximal boundary condition. Total 
peripheral resistance, Tperiod and arterial compliance followed. 
The sensitivity to Tperiod was directly addressed by exploiting 
the HR information. The high sensitivities of compliance and 
resistance can most likely be attributed to our selection of the 
model outputs, namely brachial SBP and DBP, and thus PP and 
MAP. Arterial compliance is a major determinant of PP [54] 
and total peripheral resistance dictates MAP. [55].  

The mitigation of errors that are inevitably present in clinical 
measurements challenges the reliability of oscillometric 
devices.  The majority of automatic cuff devices for measuring 
blood pressure are based on generalized models to estimate 
blood pressure from an oscillogram [56]. This can limit the 
accuracy of the device in a certain pressure range. A noteworthy 
approach has been proposed by Liu et al. [57]. They used a 
physiologic model in conjunction with model fitting [58]. The 

method has achieved to maintain blood pressure estimation 
accuracy whereas it was proven to be less sensitive to common 
physiologic deviations in the oscillogram. Here, artificial errors 
in brSBP and cf-PWV measurements were manually introduced 
in a discrete way in order to study the effect of each error on the 
predictions. However, it should be emphasized that 
measurements errors in brSBP and cf-PWV may also happen 
concurrently and be highly interdependent.  

The sensitivity analysis in measurements’ errors in brSBP 
and cf-PWV demonstrated evidence that the CO and cSBP 
predictions are expected to be more sensitive to errors in brSBP 
than to errors in cf-PWV. The cSBP prediction seems to be 
determined mainly from the brSBP information, while brSBP is 
rather sensitive to the resistance (sensitivity matrix, Fig. 2) that 
dictates the mean blood pressure. The strong sensitivity of 
cSBP estimation to brSBP errors is to be expected, since the 
input brSBP and the estimated cSBP are strongly related to 
mean blood pressure, which is practically the same in both 
central and peripheral arterial sites.  

cf-PWV, on the other hand, is related to arterial compliance, 
which is a weaker determinant of stroke volume and cardiac 
output, compared to arterial resistance and by extension to 
mean pressure, as also described in earlier work by Stergiopulos 
et al. [59]. In our analysis, this is clearly demonstrated in the 
scaled sensitivity matrix (Fig. 2); the sensitivity between cf-
PWV and Qmax, and thus CO, is approximately 2.5 times smaller 
(equal to 0.42) compared to the sensitivity between brSBP and 
Qmax (equal to 1.00). 

In order to evaluate the method’s predictions, data from 
Mobil-O-Graph device were used. However, SphygmoCor data 
were also available and, therefore, we additionally compared 
our method’s estimates using the data from the SphygmoCor 
device. Overall, a better performance was observed when 
pressure data from Mobil-O-Graph were used. It is possible that 
the discrepancies in CO and cSBP estimations between the two 
office devices may be attributed to differences between the two 
measurement techniques. First, differences exist in the 
technique of signal acquisition as well as the arterial site of 
recording; Mobil-O-Graph uses oscillometry at the brachial 
artery level and SphygmoCor uses applanation tonometry at the 
radial or carotid artery. Furthermore, differences exist in the 
computational method of central blood pressure derivation; 
Mobil-O-Graph applies the ArcSolver as previously described  
whereas SphygmoCor applies generalized transfer function 
[18]. SphygmoCor applies generalized transfer function while 

 
Fig. 10.  Arbitrary aortic pressure waveform that was yielded from the 1-D 
arterial tree solver. 
  



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2019.2956604, IEEE Journal of
Biomedical and Health Informatics

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

11 

Mobil-O-Graph the ArcSolver, previously described in [60] and 
[61] . The central aortic pressure derived from Mobil-O-Graph 
is simultaneously recorded with the brachial pressure. In 
contrast, SphygmoCor uses a generalized transfer function to 
transform the radial pressure wave into aortic pressure wave 
[50]. Since brachial pressure is the one that drives the 
optimization process, Mobil-O-Graph’s simultaneous brachial 
and central pressures acquisition may potentially lead to a more 
accurate aortic-to-peripheral PP amplification and thus more 
accurate prediction. Additionally, SphygmoCor’s generalized 
transfer function is likely to deviate from our partially 
individualized method at a greater extent than Mobil-O-Graph’s 
“per patient” scheme. Finally, differences in measurement 
accuracy between the two apparatuses may be also due to 
different calibration methods [62]. 

Part of the state of the art has focused on the improvement of 
the already available generalized TFs. Swamy et al. have 
presented a work on an adaptive GT using information on the 
wave propagation delay time between aortic and peripheral 
pressure waves [63]. However, this information was obtained 
using prior knowledge of the aortic flow. Some of the previous 
authors have proposed an improved adaptive GT using arterial 
wave transmission and reflection coefficient information [64]. 
Their results have showed significant accuracy improvement in 
cSBP estimations (RMSE equal to 3.43 mmHg), especially in 
patients with low PP amplification. 

Hahn et al. have introduced a novel approach on the central 
aortic pressure wave from measured peripheral pressure wave 
by employing an individualized transmission line (TL) model 
[65]. The method was evaluated on swine data and achieved a 
high correlation of 0.92 between predicted aortic SBP and the 
reference aortic SBP. Nevertheless, the use of a TL model may 
be regarded as a simplification due to the actual curvature of the 
arterial line and the multiple reflection sites that may not be 
accurately described by a lumped terminal impedance. 
Moreover, the methods presented above employ a single 
pressure waveform and thus, the individualization is considered 
to be more simplified compared to a technique that fuses 
multiple noninvasive measurements.  

Approaches comparable to ours have been developed to 
address the challenges of patient-specific hemodynamic 
monitoring. Tosello et al. [66] have proposed a new technique 
for determining central blood pressure using a multiscale 
mathematical model which is adjusted based on age, height, 
weight, brachial pressure, left-ventricular end-systolic and end-
diastolic volumes and aortic pulse wave velocity. The 
estimation derived from their method presented low 
performance (significant overestimation of 7.8 mmHg for cSBP 
prediction) when compared against data from the SphygmoCor 
device. In their work, a large number of input variables are 
needed, including also central qualities (e.g., end-systolic and 
end-diastolic volumes). Here, however, cSBP can be predicted 
with a higher accuracy and by using fewer input parameters for 
the partial individualization of the model. Therefore, this 
simplifies the measurement process and potentially decreases 
the total cost of monitoring. Recently, Guala et al. published a 
validation of the same multiscale model using invasive catheter 
data [67]. Their model provided an underestimation of both 
central systolic and diastolic pressure values; the difference 
between the invasive aortic pressure and the model-derived 
estimates was 4.30±16.70 mmHg for central systolic pressure 

and 3.80±10.40 mmHg for central diastolic pressure. Validation 
using invasive data should be conducted for our proposed 
methodology, so as to be able to perform a fair comparison 
between the performance of the two models.  

Additionally, important cardiovascular risk predictors have 
recently been estimated from the fusion of multiple noninvasive 
measurements (i.e., pulse pressure waveforms at the arm and 
the ankle) [68]. The method provides predictions of central SBP 
and pulse pressure (PP), PP amplification, and pulse transit 
time. RMSE for cSBP was reported to be rather low (1.99 
mmHg). An advantage of the technique is that it also yields the 
entire central pressure waveform. Nevertheless, the use of a 
lumped-parameter model to describe the arterial tree may not 
be sufficient for considering the intermediate reflections 
between the central and the distal arterial site. Hence, this may 
be considered as a simplification when compared to a complete 
model of the systemic circulation. 

A particularly interesting study was performed by Swamy et 
al. [69]. They estimated CO using peripheral pressure waves 
from multiple arterial sites, is of particular interest. In the 
proposed methodology, the aortic pressure wave is computed 
by applying a multichannel blind system identification 
algorithm [70]. The concept is based on the assumption that an 
arterial path between two arterial sites can be described by a 
transfer function of a finite impulse response (FIR) filter. The 
filter parameters were defined through a deconvolution 
algorithm. Subsequently, CO was estimated via fitting a 
Windkessel model to the computed aortic pressure wave. The 
lumped parameters of the Windkessel model (compliance and 
resistance) were calculated by extracting the time constant from 
the aortic pressure wave. Although this method illustrated an 
effective way of identifying CO (with a normalized RMSE of 
12.9 %), it constitutes a relatively simplified approach which is 
based on a mathematical transfer function with less 
physiological information on the patient-based cardiovascular 
system in comparison to a complete model of systemic 
circulation. 

Fazeli and Hahn have also proposed an improved Windkessel 
approach for individualized CO and total peripheral resistance 
(TPR) estimation [71]. Their approach is based on “tuning” a 
WK model using measurements of systolic, diastolic, and mean 
arterial blood pressure. The method outperformed the standard 
Windkessel method (prediction improved by 16.00 %) 
providing also an optimal patient- and time-specific time 
constant that is needed to estimate CO and TPR. A limitation of 
the study pertains to the simple linear model that was used to 
associate pressure and arterial compliance. This may be far 
from the actual highly nonlinear relationship between the two 
[72] and may affect the validity of the method when applied on 
a wider range of pulse pressure values. 
 

A. Limitations 
A number of limitations need to be considered. The gold 

standard technique for central aortic pressure is an invasive, 
catheter-based measurement. In this study, evaluation was 
conducted using central aortic pressure waves obtained from 
the Mobil-O-Graph device. Although the Mobil-O-Graph has 
been successfully validated in the past [44], significant errors 
may be present in the Mobil-O-graph estimations. Therefore, 
the validation presented here is only of relative and limited 
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value. It cannot be used to demonstrate any potential advantage 
in comparison to the existing generalized mathematical models. 
Similarly, the reference method used for aortic flow was 
transcutaneous echocardiography, which can only allow us to 
conclude that the prediction of this method is a fair estimate of 
the true value. Future studies using gold standard invasive 
measurement techniques are required for full validation of the 
proposed method. From an ethical perspective, it was not 
possible to perform invasive measurements in the context of a 
validation study.  

Another limitation lies in the small sample size of older 
subjects who exhibit high PWV values. Also, the subject cohort 
is quite uniform in terms of PP (e.g., standard deviation of PP 
equal to 4 mmHg). This does not allow us to assess how well 
the method adapts to large variations in PP. To further enhance 
the robustness of the proposed method, validation on a larger 
population (including a larger number of patients older than 50 
years and a wider range of PP levels) should be performed.  

Furthermore, the integration of previously published data in 
the adjustment of arterial diameter leads to an “average” version 
of the 1-D cardiovascular model in terms of geometric 
configuration. Even if we tune the model with the patient-
specific measurements that we have at our disposal, the patient-
specific character of the method cannot be entirely justified. 
However, a fully personalized model would not be possible, 
since this would require us to obtain numerous noninvasive and 
invasive measurements for every individual. Since CO is 
known to be particularly dependent on arterial geometry 
measurements [73], individualized CO prediction still remains 
a challenge.  

In addition, the use of previously published data on HR-
related systolic duration leads to an approximation of the aortic 
flow wave. However, the difference between the approximated 
Tsystole and the actual Tsystole (derived from the reference 
ultrasound aortic flows) was found to be -10.05±6.72 ms and 
thus not very considerable. Furthermore, the sensitivity analysis 
demonstrated that the model outputs were less sensitive to 
changes in Tsystole (Fig. 2). When the actual systolic duration 
was used as an input to the model, the CO and cSBP predictions 
were improved by 0.84 % and 0.63 %, respectively. As 
anticipated, the more information is embedded into the system, 
the more accurate our predictions become. However, our 
assumptions do not seem to significantly underestimate the 
prediction capacity of our model in the study population.  

Moreover, we should comment that the aortic flow wave that 
we imposed as a proximal boundary condition had a constant 
shape (only Qmax, Tperiod, and Tsystole were modified), while the 
systolic duration was defined as a relative approximation with 
respect to HR. These points also contribute to characterizing the 
model as partially patient-specific.  

This study demonstrates the method’s capacity to predict 
absolute CO for each subject. However, clinical research is 
particularly interested in monitoring CO changes within the 
same patient [74]; especially for patients in the intensive care 
unit [75]. Thus, another limitation pertains to the lack of 
available data to validate changes in the estimated CO within 
an individual. Our future work envisages the evaluation of our 
method on inter-patient changes in CO data. 

Another potential limitation may be the inconvenience in 
acquiring cf-PWV. Cf-PWV measurement requires sequential 
recording of the carotid and femoral pressure pulse via 

applanation tonometry [76], [77]. The measurement process 
also takes some time to obtain the two signals sequentially, 
whereas it is intrusive in that it requires palpation of the femoral 
pressure pulse near the groin [78]. Alternatively, the volume-
clamp technique [79] proposes the use of the finger pressure 
waveform for estimating cSBP and CO. Nevertheless, this 
technique excludes the arterial stiffness information embedded 
in cf-PWV which potentially enhances the physiological 
relevance of CO calculation. 

Nobody can exclude that certain combinations of cardiac and 
arterial parameters may yield similar pressure and PWV values. 
We tested our method on a synthetic case of reduced 
contractility in the presence of increased total peripheral 
resistance and assessed its performance. Concretely, the cardiac 
contractility was reduced by decreasing the end-systolic 
elastance (Ees) by 20 % while total peripheral resistance was 
increased by 40 % in order to maintain pressure at normal 
levels. This yielded brachial SBP and DBP, and cf-PWV, which 
were isolated and used as input to the inverse method. After the 
optimization process, the estimated CO and cSBP for the case 
of reduced contractility were close to their real values (-0.21 % 
error in cSBP prediction and 3.30 % in CO prediction). 
Nevertheless, it is possible that there are extreme cases for 
which our algorithm may fall short in making an accurate 
prediction. Therefore, further investigation on the method’s 
performance in such cases should be performed in order to 
evaluate the potential errors in a larger scale.  

Finally, this method has been designed and applied on a 
healthy population. Hence, its applicability might be limited in 
the case of pathological conditions, such as aneurysm or aortic 
valve disease, where the relationship between input and output 
values is significantly modified and often poorly specified. 
Investigation of the method’s performance on such populations 
could also be of particular interest. 

IX. CONCLUSION 
In conclusion, it was demonstrated that a generic 1-D model 

of the systemic circulation can be effectively adjusted to 
partially patient-specific standards using noninvasive 
measurements of peripheral cuff-based pressure and PWV. The 
in vivo evaluation suggests that this novel method predicts CO 
and cSBP with good accuracy and specificity. Further clinical 
validation against gold standards measurements remains to be 
performed in order to verify that the proposed technique may 
be employed for noninvasive CO and cSBP monitoring in the 
clinical setting. 
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