279 research outputs found

    Ajitts: adaptive just-in-time transaction scheduling

    Get PDF
    Lecture Notes in Computer Science 7891, 2013Distributed transaction processing has benefited greatly from optimistic concurrency control protocols thus avoiding costly fine-grained synchronization. However, the performance of these protocols degrades significantly when the workload increases, namely, by leading to a substantial amount of aborted transactions due to concurrency conflicts. Our approach stems from the observation that when the abort rate increases with the load as already executed transactions queue for longer periods of time waiting for their turn to be certified and committed. We thus propose an adaptive algorithm for judiciously scheduling transactions to minimize the time during which these are vulnerable to being aborted by concurrent transactions, thereby reducing the overall abort rate. We do so by throttling transaction execution using an adaptive mechanism based on the locally known state of globally executing transactions, that includes out-of-order execution. Our evaluation using traces from the industry standard TPC-E workload shows that the amount of aborted transactions can be kept bounded as system load increases, while at the same time fully utilizing system resources and thus scaling transaction processing throughput.(undefined

    A Theory of Cheap Control in Embodied Systems

    Full text link
    We present a framework for designing cheap control architectures for embodied agents. Our derivation is guided by the classical problem of universal approximation, whereby we explore the possibility of exploiting the agent's embodiment for a new and more efficient universal approximation of behaviors generated by sensorimotor control. This embodied universal approximation is compared with the classical non-embodied universal approximation. To exemplify our approach, we present a detailed quantitative case study for policy models defined in terms of conditional restricted Boltzmann machines. In contrast to non-embodied universal approximation, which requires an exponential number of parameters, in the embodied setting we are able to generate all possible behaviors with a drastically smaller model, thus obtaining cheap universal approximation. We test and corroborate the theory experimentally with a six-legged walking machine. The experiments show that the sufficient controller complexity predicted by our theory is tight, which means that the theory has direct practical implications. Keywords: cheap design, embodiment, sensorimotor loop, universal approximation, conditional restricted Boltzmann machineComment: 27 pages, 10 figure

    Tendinopathy—from basic science to treatment

    Get PDF
    Chronic tendon pathology (tendinopathy), although common, is difficult to treat. Tendons possess a highly organized fibrillar matrix, consisting of type I collagen and various 'minor' collagens, proteoglycans and glycoproteins. The tendon matrix is maintained by the resident tenocytes, and there is evidence of a continuous process of matrix remodeling, although the rate of turnover varies at different sites. A change in remodeling activity is associated with the onset of tendinopathy. Major molecular changes include increased expression of type III collagen, fibronectin, tenascin C, aggrecan and biglycan. These changes are consistent with repair, but they might also be an adaptive response to changes in mechanical loading. Repeated minor strain is thought to be the major precipitating factor in tendinopathy, although further work is required to determine whether it is mechanical overstimulation or understimulation that leads to the change in tenocyte activity. Metalloproteinase enzymes have an important role in the tendon matrix, being responsible for the degradation of collagen and proteoglycan in both healthy patients and those with disease. Metalloproteinases that show increased expression in painful tendinopathy include ADAM (a disintegrin and metalloproteinase)-12 and MMP (matrix metalloproteinase)-23. The role of these enzymes in tendon pathology is unknown, and further work is required to identify novel and specific molecular targets for therapy

    Scalable Verification of Linear Controller Software

    Get PDF
    We consider the problem of verifying software implementations of linear time-invariant controllers against mathematical specifications. Given a controller specification, multiple correct implementations may exist, each of which uses a different representation of controller state (e.g., due to optimizations in a third-party code generator). To accommodate this variation, we first extract a controller\u27s mathematical model from the implementation via symbolic execution, and then check input-output equivalence between the extracted model and the specification by similarity checking. We show how to automatically verify the correctness of C code controller implementation using the combination of techniques such as symbolic execution, satisfiability solving and convex optimization. Through evaluation using randomly generated controller specifications of realistic size, we demonstrate that the scalability of this approach has significantly improved compared to our own earlier work based on the invariant checking method

    Procjena varijabli stanja sustava s gorivnim člankom i uzlaznim pretvaračem metodom brzog uzorkovanja signala

    Get PDF
    Estimation of state variables of a peak current mode (PCM) controlled DC-DC boost converter supplied by a PEM fuel cell is described in this paper. Since this system is highly nonlinear and non-minimum phase, its state variables are estimated by using fast output sampling method. Estimated state variables are the converter output voltage and its first derivative, and they are suitable for model reference adaptive control or sliding mode based control techniques. The estimator has been designed in a way that it gives a good estimate of the state variables in the continuous and in the discontinuous conduction mode of the converter, and in the presence of measurement and process noise caused by converter switching-mode operation. Experimental results of estimating the state variables on a 450 W boost converter supplied by the emulator of the PEM fuel cell BCS 64-32 show good results of the estimation, regardless of the conduction mode of the converter, i.e. the operating point determined by its output current.U ovom radu obrađena je procjena varijabli stanja sustava s istomjernim uzlaznim pretvaračem u vršnom strujnom načinu upravljanja napajanim PEM gorivnim člankom. Budući da je taj sustav izrazito nelinearan te neminimalno-fazan, za procjenu njegovih varijabli stanja upotrebljena je metoda brzog uzorkovanja izlaznog signala. Procjenjene varijable stanja su izlazni napon uzlaznog pretvarača te njegova prva derivacija, te su pogodne za adaptivno upravljanje s referentnim modelom i upravljanje temeljeno na kliznim režimima. Procjenitelj je projektiran na način da daje dobru procjenu varijabli stanja u kontinuiranom i diskontinuiranom režimu rada pretvarača, te u uvjetima mjernog i procesnog šuma uzrokovanog sklopnim načinom rada pretvarača. Eksperimentalni rezultati procjene varijabli stanja na uzlaznom pretvaraču snage 450 W napajanim emulatorom gorivnog članka BCS 64-32 pokazuju dobre rezultate procjene, neovisno o režimu rada pretvarača, odnosno radnoj točki određenoj njegovom izlaznom strujom

    Soft tissue tumor imaging in adults: European Society of Musculoskeletal Radiology-Guidelines 2023—overview, and primary local imaging: how and where?

    Get PDF
    Objectives: Early, accurate diagnosis is crucial for the prognosis of patients with soft tissue sarcomas. To this end, standardization of imaging algorithms, technical requirements, and reporting is therefore a prerequisite. Since the first European Society of Musculoskeletal Radiology (ESSR) consensus in 2015, technical achievements, further insights into specific entities, and the revised WHO-classification (2020) and AJCC staging system (2017) made an update necessary. The guidelines are intended to support radiologists in their decision-making and contribute to interdisciplinary tumor board discussions. Materials and methods: A validated Delphi method based on peer-reviewed literature was used to derive consensus among a panel of 46 specialized musculoskeletal radiologists from 12 European countries. Statements were scored online by level of agreement (0 to 10) during two iterative rounds. Either “group consensus,” “group agreement,” or “lack of agreement” was achieved. Results: Eight sections were defined that finally contained 145 statements with comments. Overall, group consensus was reached in 95.9%, and group agreement in 4.1%. This communication contains the first part consisting of the imaging algorithm for suspected soft tissue tumors, methods for local imaging, and the role of tumor centers. Conclusion: Ultrasound represents the initial triage imaging modality for accessible and small tumors. MRI is the modality of choice for the characterization and local staging of most soft tissue tumors. CT is indicated in special situations. In suspicious or likely malignant tumors, a specialist tumor center should be contacted for referral or teleradiologic second opinion. This should be done before performing a biopsy, without exception. Clinical relevance: The updated ESSR soft tissue tumor imaging guidelines aim to provide best practice expert consensus for standardized imaging, to support radiologists in their decision-making, and to improve examination comparability both in individual patients and in future studies on individualized strategies. Key Points: • Ultrasound remains the best initial triage imaging modality for accessible and small suspected soft tissue tumors. • MRI is the modality of choice for the characterization and local staging of soft tissue tumors in most cases; CT is indicated in special situations. Suspicious or likely malignant tumors should undergo biopsy. • In patients with large, indeterminate or suspicious tumors, a tumor reference center should be contacted for referral or teleradiologic second opinion; this must be done before a biopsy

    Application of a Key Events Dose-Response Analysis to Nutrients: A Case Study with Vitamin A (Retinol)

    Get PDF
    The methodology used to establish tolerable upper intake levels (UL) for nutrients borrows heavily from risk assessment methods used by toxicologists. Empirical data are used to identify intake levels associated with adverse effects, and Uncertainty Factors (UF) are applied to establish ULs, which in turn inform public health decisions and standards. Use of UFs reflects lack of knowledge regarding the biological events that underlie response to the intake of a given nutrient, and also regarding the sources of variability in that response. In this paper, the Key Events Dose-Response Framework (KEDRF) is used to systematically consider the major biological steps that lead from the intake of the preformed vitamin A to excess systemic levels, and subsequently to increased risk of adverse effects. Each step is examined with regard to factors that influence whether there is progression toward the adverse effect of concern. The role of homeostatic mechanisms is discussed, along with the types of research needed to improve understanding of dose-response for vitamin A. This initial analysis illustrates the potential of the KEDRF as a useful analytical tool for integrating current knowledge regarding dose-response, generating questions that will focus future research efforts, and clarifying how improved knowledge and data could be used to reduce reliance on UFs

    Extreme heat-related mortality avoided under Paris Agreement goals

    Get PDF
    In key European cities, stabilizing climate warming at 1.5 °C would decrease extreme heat-related mortality by 15–22% per summer compared with stabilization at 2 °C

    Effects of mineral amendments on trace elements leaching from pre-treated marine sediment after simulated rainfall events

    Get PDF
    Bauxite extraction by-products (red mud) were used to evaluate their potential ability to stabilize trace elements from dredged and aerated/humidified marine sediment. The investigated by-products were: bauxaline®(BX) that is a press-filtered red mud; bauxsol™(BS) that is a press-filtered red mud previously washed with excess of seawater, and gypsum neutralized bauxaline® (GBX). These materials were separately mixed to dredged composted sediment sample considering 5% and 20% sediment: stabilizer ratios. For pilot experiments, rainfall events were regularly simulated for 3 months. Concentrations of As, Mo, Cd, Cr, Zn, Cu, and Ni were analyzed in collected leachates as well as toxicity. Results showed that Cd, Mo, Zn, and Cu were efficiently stabilized in the solid matrix when 20% of BX, BS, and GBX was applied. Consequently, toxicity of leachates was lower than for the untreated sediment, meaning that contaminants mobility was reduced. A 5% GBX was also efficient for Mo, Zn and Cu stabilization. In all scenarios, As stabilization was not improved. Compared to all other monitored elements, Mo mobility seemed to depend upon temperature-humidity conditions during pilot experiments suggesting the need of further investigations

    Towards the Verification of Hybrid Co-simulation Algorithms

    Get PDF
    International audienceEngineering modern, hybrid systems is becoming increasingly difficult due to the heterogeneity between different subsystems. Modelling and simulation techniques have traditionally been used to tackle complexity, but with increasing heterogeneity of the subsystems, it becomes impossible to find appropriate modelling languages and tools to specify and analyse the system as a whole. Co-simulation is a technique to combine multiple models and their simulators in order to analyse the behaviour of the whole system over time. Past research, however, has shown that the na¨ıvena¨ıve combination of simulators can easily lead to incorrect simulation results, especially when co-simulating hybrid systems. This paper shows (i) how co-simulation of a family of hybrid systems can fail to reproduce the order of events that should have occurred (event ordering); (ii) how to prove that a co-simulation algorithm is correct (w.r.t. event ordering), and if it is incorrect, how to obtain a counterexample showing how the co-simulation fails; and (iii) how to correct an incorrect co-simulation algorithm. We apply the above method to two well known co-simulation algorithms used with the FMI Standard, and we show that one of them is incorrect for the family of hybrid systems under study, under the restrictions of the standard. The conclusion is that either the standard needs to be revised, or one of the algorithms should be avoided
    corecore