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Abstract. Distributed transaction processing has benefited greatly from
optimistic concurrency control protocols thus avoiding costly fine-grained
synchronization. However, the performance of these protocols degrades
significantly when the workload increases, namely, by leading to a sub-
stantial amount of aborted transactions due to concurrency conflicts.
Our approach stems from the observation that when the abort rate in-
creases with the load as already executed transactions queue for longer
periods of time waiting for their turn to be certified and committed. We
thus propose an adaptive algorithm for judiciously scheduling transac-
tions to minimize the time during which these are vulnerable to being
aborted by concurrent transactions, thereby reducing the overall abort
rate. We do so by throttling transaction execution using an adaptive
mechanism based on the locally known state of globally executing trans-
actions, that includes out-of-order execution.
Our evaluation using traces from the industry standard TPC-E workload
shows that the amount of aborted transactions can be kept bounded
as system load increases, while at the same time fully utilizing system
resources and thus scaling transaction processing throughput.
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1 Introduction

Optimistic concurrency control in distributed data processing systems is increas-
ingly popular. In replicated database systems [1–3], it allows concurrent transac-
tions to execute at different sites regardless of possible conflicts. Conflict detec-
tion and resolution are performed at commit time, before the changes are applied
to the database. In large scale, high throughput transactional systems such as
Google Percolator [4] and OMID [5], implementations of optimistic concurrency
control with different isolation levels and locking policies are key to achieving
radical scalability.

While optimistic concurrency control allows more concurrency and thus bet-
ter use of resources than its counterpart, transactions that are later found to
conflict are aborted and must be re-executed. Notice that the more transactions
are allowed to execute concurrently, the more likely it is for conflicts to arise.
Also, any transaction is vulnerable to being aborted by other transactions from
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the moment it starts to execute until is is certified: the longer it takes to execute
and certify a given transaction, the more vulnerable it is. This is the caveat of
most optimistic concurrency control strategies: when loaded, latency increases
and fairness is compromised, particularly for long-running transactions [1].

In contrast, conservative concurrency control is implemented by subjecting
transactions to a priori conflict detection. In some of these protocols, conflict
detection is done by associating queues to data partitions [3, 6–8]. The queues
are used to serialize transactions that access the same data partitions. The per-
formance penalty imposed by the conservative strategy depends on the grain
considered for concurrency control: if the grain is too fine, conflict detection will
result in a delay before transaction execution; on the other hand, if the grain
is too coarse, transactions that would not otherwise conflict are unnecessarily
prevented from executing concurrently [1].

It has been proposed that both approaches be combined by conservatively re-
executing previously aborted transactions, which mitigates this issue. However,
if appropriate conflict classes cannot be used to ensure no conflicts occur during
re-execution, the system will quickly be prevented from exploting optimism [1].
Moreover, although most optimistic concurrency control protocols execute trans-
actions as soon as these are submitted [2, 3], it has been pointed out that the
worst scenarios for optimistic concurrency control can be mitigated by limiting
the number of transactions executing concurrently [1]. Transaction scheduling
on non-distributed settings using queue-theoretic models for automatically ad-
justing the maximum parallelism level has been studied [9]. However, selecting
the correct level of parallelism is not straightforward and can result in a severe
limitation to maximum throughput.

In this paper we solve this problem with AJITTS, an adaptive just-in-time
transaction scheduler. This mechanism minimize aborts while maximizing trans-
action throughput by computing the appropriate start time for each transaction.
The intuition behind this proposal is simple: If a transaction must wait to be
certified in the correct order, to ensure consistency in a distributed system, it is
better that it waits prior to execution, as it is not susceptible to being aborted
by conflicts with concurrent transactions. The implementation of this simple in-
tuition does however imply that the system is continually monitored and that
an appropriate execution start time is computed for each transaction.

The rest of this paper is structured as follows. In Section 2 we show that
there is an ideal configuration for each workload, that improves performance
regarding the basic optimistic protocol, introducing then the mechanism used
to dynamically compute such configuration. In Section 3 we use traces obtained
from the TPC-E workload running on a MySQL database server to simulate dif-
ferent workload scenarios and evaluate our proposal. Finally, Section 4 concludes
the paper.
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2 Approach

The main insight leading to our proposal is as follows: Since transactions are
vulnerable to being aborted from the time execution starts until certification,
in order to minimize the number of aborts, execution should start as late as
possible. On the other hand, if certification goes idle because transactions at the
head of the queue have not been completely executed, the throughput decreases.
Our approach is thus based on reaching and maintaining the optimal level of
queuing in the system: As low as possible to minimize aborts but as high as
needed to ensure that certification doesn’t go idle, to maximize throughput.

2.1 System model

To test this hypothesis, we assume an abstract model that captures key aspects of
a distributed transaction processing system. First, we assume that transactions
submitted to the system are totally ordered and placed at the tail of a queue in
the not executed state. This models either a centralized queue at the transaction
manager server [5] or local replicas of a queue built by a group communication
system [2]. Because transactions must be certified in a conflict-equivalent order
to the total order on which replicas agreed, the system can be modelled as a
single queue in which transactions go through several states.

We then introduce a line in the queue that determines which transactions
should start execution: all transactions before the line are not eligible to start
executing, while all transactions between the line and the head of the queue that
are in the not executed state are to be executed. Simply put, transactions are
evaluated for execution whenever a transaction arrives to (i.e. is submitted) or
leaves the queue (i.e. committed or aborted). Transactions can only be certified
upon reaching the head of the queue and having completed execution, entering
the certification state.

Conflict detection ensues: if the transaction was in the executed state, con-
flicting transactions in either executing or executed states are aborted and the
transaction is immediately certified; if it was in the aborted state, the outcome
is an abort. For certification, we assume snapshot isolation, which differs from
serializability by considering only write/write conflicts [10]. This is used in the
overwhelming majority of current RDBMSs and has also been favored in dis-
tributed transaction processing systems.

2.2 Impact of scheduling

Ideally, the line would be placed at such a position that each transaction com-
pletes execution just as it arrives at the head of the queue, minimizing the time
spent in the executed state before reaching certification, thus minimizing its vul-
nerability to being aborted by others. However if the transaction reaches the
head of the queue in either not executed or executing states, it cannot be cer-
tified until it finishes. Certification must occur in a conflict-equivalent order to
the previously established total order, which is key to guaranteeing determinism
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in a distributed setting. As such, transactions running late cannot be overtaken
by others, leaving certification idle.

Transactions can have widely varying execution times (i.e. duration), which
should be considered when scheduling them. Let dt be the estimate of the dura-
tion of transaction t, which can be easily obtained from a database planner.

Assuming that the head of the queue corresponds to position 1, let

post = input · dt (1)

be the position in the queue after which transaction t will be executed. This
means that transaction t will be executed when there are post − 1 or less trans-
actions ahead of it in the queue, which is the same as placing a line in the queue.
Notice that transaction t is not scheduled for a particular instant in absolute
time: it is relative to the current inter-arrival rate of transactions at the head
of the queue. This enables out-of-order execution: a small transaction will begin
execution near the head of the queue, while a very large transaction will begin
execution as soon as it is submitted.

The input parameter provides a simple way to adjust how early transactions
should be executed: for the same estimated duration, a higher value of input
means that the transaction will be executed earlier than with a lower value.

We then built an event-driven simulation of the abstract system model with
the adjustable executuon start line. This simulation allows the position of the
line that triggers execution to be adjusted, as well as to use different workloads,
further described in Section 3. From this simulation we collect a number of
statistics, namely: usable throughput, considering transactions that can be com-
mitted; share of transactions aborted due to concurrency conflicts; and latency
at each state, from which we derive also end-to-end latency.

Figure 1 shows the latency breakdown for a particular workload (400 clients)
while varying the input parameter. On the right hand, transactions are sched-
uled early, thus reducing the amount of time in the not executed state, shown in
blue. In fact, an extreme setting of the parameter is equivalent to the baseline
optimistic protocol, meaning that transactions are immediatly scheduled for ex-
ection and the entire impact of synchronization happens in the executed state.
On the left, transactions are scheduled later, thus waiting an increased amount
of time before execution, but waiting very little as executed (in brown). As ex-
pected, varying this parameter does not have an impact in execution duration
(in red). As expected, we observe that overly delaying transaction execution has
an impact in total latency.

Figure 2 shows a complete set of statistics for three different workloads. These
workloads differ only in the number of concurrent clients submitting transactions.
First, we observe that besides impacting end-to-end latency, the input parameter
that determines when execution is started also impacts throughput and the abort
rate leading to the following trade off:

– On the left, with a larger delay before execution, transactions arrive at the
head of the queue but are not yet fully executed, thus stalling certification
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Fig. 1. Average latency breakdown with a varying scheduler parameter: Pre-execution
delay (blue), execution latency (red), and queueing for certification (brown).

and leading to reduced throughput. However, the small delay to certification
leads to a reduced number of concurrency aborts.

– On the right, transactions are executed fairly ahead of time, thus avoiding
stalling the queue. On the other hand, by having started early they become
concurrent with a larger number of transactions and thus lead to an increased
amount of rollbacks due to conflicts.

Notice that, for example, if input is between 0.4 · 10−3 and 0.9 · 10−3 for 800
clients, throughput is sub-optimal because transactions are being executed too
late. This can be confirmed by analyzing the transaction latency in the same
interval. Also, for example for 200 clients, the abort rate steadily rises as input
increases, but when input becomes larger than 1, the abort rate stabilizes at
around 5%. This happens because after this point roughly all transactions are
being executed as soon as they are submitted, equivalent to using DBSM [2].
This effect occurs for any number of clients, it is just a question of using a large
enough input.

Figure 3 shows similar results when, instead of varying the workload, we vary
the resources available for execution. This leads to the time spent in the executing
state growing. However, the same trade off holds. In short, we observe that there
is an intermediate configuration that provides the best usable throughput with
moderate latency. This is true regardless of the number of concurrent clients
or the resources available to execute transactions. This optimal configuration
is however different for different settings, which makes its configuration by the
system developer unfeasible. As it varies with the workload, it is also impractical
as a configuration parameter.
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Fig. 2. Effect of the input value on throughput, the abort rate, transaction latency and
on the ratio between average transaction queueing and average duration for different
numbers of clients.

2.3 Adapting the workload

The question becomes how to determine an appropriate input value that provides
optimal throughput without resorting to trial and error.

A simple adaptation mechanism would be to simply start execution one
position sooner whenever a transaction reaches the head of the queue in the
not executed or executing states or one position later whenever it has to wait in
the executed state or has been aborted. This approach was tested, but such an
adaptation mechanism, while simple, causes oscillation, since such changes are
too abrupt [11].

Let tstate be the instant in which transaction t reaches state state. For any
transaction t,

st = tnot executed − texecuting
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Fig. 3. Effect of the input value on throughput, the abort rate, transaction latency and
on the ratio between average transaction queueing and average duration for different
distributions of transaction duration.

measures how long transaction t had to wait to begin to execute since it was
submitted, and

qt = tcertification − texecuted

measures how long transaction t had to wait after its execution was complete
before reaching the head of the queue to be certified, henceforth simply referred
to as pre-execution delay and queuing, respectively. Queuing is directly affected
by whether transactions are executed sooner or later: on average, the former
increases queuing while the latter decreases it. Let Q be a weighted cumulative
rolling average of q and Qopt the optimal level of queuing for a system. An
adaptive mechanism that reacts to the state of the queue can be defined using a
proportional-integral-derivative controller[11] with Q as the sensor, Qopt as the
set point and input as the system input [11] such that:
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error = setpoint− sensor

Pvalue = Kp ∗ error
input+ = Pvalue

Simply put, the error of the measured value (sensor) relatively to the desired
value (setpoint) is used to update an input to the system (input) which will in
turn impact the measured value, constituting the control feedback loop.

Kp is referred to as proportional gain, a tuning parameter that adjusts how
the sensitivity of the controller, i.e., the magnitude of the adaptation relatively
to the magnitude of the error. Several methods exist for selecting an appropriate
value for Kp, from manual tuning to methods based on heuristics[12].

Because computing the position of the line relies on an estimated value for
transaction duration, for which the expected value is the mean, depending on
the variance of the population, selecting a set point of 0 would mean that several
transactions would not finish its execution in time, leaving certification idle.

The key to finding Qopt is in comparing the bottom-right chart of Figure 2
which shows the ratio between the average queuing and the average duration
of all transactions with the top-left chart showing throughput. Notice that the
input values that achieve optimal throughput in the top-left chart match those
for which the ratio in the bottom-right chart is roughly 1. Intuitively, selecting
the set point to target average duration would mean that certification does not
go idle and, consequently, that the rate at which transactions are certified is the
same as the rate at which transactions arrive at the head of the queue which
corresponds to optimal throughput but minimizing the size of the queue meaning
a minimal abort rate. If deemed necessary, due to high variance in transaction
duration, from the cumulative distribution function of transaction duration one
can choose a value for the set point corresponding to a desired percentile: the
higher the percentile of the chosen value, the higher the number of transactions
that will have completed execution as expected.

3 Evaluation

3.1 Workload

TPC-E [13] is a benchmark that simulates the activities of a brokerage firm
which handles customer account management, trade order execution on behalf
of customers and the interaction with financial markets. This analysis was based
on tpce-mysql,1 an open-source implementation of the TPC-E benchmark. This
benchmark defines 33 tables across four domains: customer, broker, market and
dimension and 10 main transaction types that operate across the domains. TPC-

1 https://code.launchpad.net/perconadev/perconatools/tpcemysql
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E’s read/write transactions are: Market Feed (MF), Trade Order (TO), Trade
Result (TR), Trade Update (TU) and Data Maintenance (DM).2

AJITTS was evaluated using a simple event-driven simulator that enables a
profound analysis of each aspect of scheduling and concurrency control of repli-
cation protocols. The simulator processes execution traces obtained by running
TPC-E like benchmark on a centralized MySQL 3 database and then parsing the
resulting binlog to generate the workload to test replication protocols. In essence,
the simulator uses the following information from the binlog: the timestamps at
which each transaction started, how long it took to execute each transaction and
transaction write sets.

Another relevant feature of the simulator is that it allows the parallelization
of the load generated by serial runs of TPC-E over the same database. In short,
it does so by creating unique identifiers for each transaction and by manipulating
timestamps making these relative to a reference instant. As a result, the load
applied to the protocol under test can be easily scaled. Also, the applied load is
not limited by resource constraints on the original MySQL database: there is no
limit on the number of load units that can be applied in parallel.

The values of transaction duration extracted from the binlog reflect the
penalty introduced by synchronization and locking in the MySQL engine when
the benchmark is executed. A correction factor (β) can be calibrated by running
the traces through the simulator with optimistic scheduling, without admission
restriction and without re-execution, chosen such that the abort rate is close to
1%. The reason for this is that the sequence of transactions in the binlog has
implicitly been proved to be conflict-free with the original values for transaction
duration.

Let dur′t be the duration extracted from the binlog for transaction t. The
respective value to be used in the simulation is durt = β ∗ dur′t.

The value of the correction factor depends on the benchmark load induced on
MySQL. Therefore, the β used in the simulation is independent of the number
of parallel traces used to fuel the simulator, as long as the load induced by each
benchmark run was about the same. If using another set of traces, the beta must
be recalculated. β is 0.2 for the traces used to evaluate AJITTS.

As discussed in Section 2, the set point should be chosen taking into consid-
eration the distribution of transaction duration. In the results presented here,
the set point used in AJITTS is the same as the average transaction duration of
the given workload.

In order to simplify the implementation of AJITTS, instead of estimating
the duration of each transaction, a line is placed on the queue for each type of
transaction. The position of the line for a transaction of type MF, for example,
is calculated as

lineMF = input ∗ dMF

2 The Data Maintenance transaction type operates exclusively on a separate group of
tables. As such, it is not relevant for this analysis and is essentially omitted from
the discussion that follows.

3 http://www.mysql.com
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Fig. 4. Throughput and abort rates using OPT and AJITTS for different numbers of
clients.

where dMF is an online estimate of the duration of MF transactions using a
cumulative rolling average.

While TPC-E already provides strictly defined transaction types, one could
classify transactions in generic workloads by either considering the similarity in
execution plans or, for example, the conflict classes accessed by transactions.
Still, AJITTS can be implemented without this simplification, computing a line
for each individual transaction.

3.2 Results

We compare AJITTS with OPT, a protocol with a standard optimistic scheduler.
Simply put, OPT schedules each execution as soon as it is submitted. Using the
TPC-E based workload described in Section 3.1, this is simulated by admitting
at most one transaction per client, since clients are single-threaded. Notice that
without this restriction, the number of concurrent transactions would be higher
than allowed in the original benchmark.

Figure 4 compares OPT and AJITTS in terms of throughput and aborts for
three workloads that differ only on the number of concurrent clients submitting
transactions. Notice that even though AJITTS introduces delays on transaction
executions, throughput is not only not adversely affected, but actually improved.
Also, AJITTS clearly succeeds in significantly reducing the abort rate. In fact,
a clear trend of further improvement can be observed in both charts as the load
increases.

Figure 5 shows how the line positions per transaction type evolve during a
run with a particular workload. Line positions are updated whenever the esti-
mates for execution duration change or whenever the adaptation input parameter
changes. The position of the line for each transaction type converges quickly: the
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Fig. 5. Evolution of the position of the lines during a particular run.

amplitude of the variation stabilizes after considerably few updates. In particu-
lar, TU transactions actually consist of three different types of subtransactions:
the variability of the duration of trade update transactions is mirrored in the
variation of the position of the line for this type of transaction. Notice that TU
transactions are scheduled much earlier than other types of transactions. Fig-
ure 5 also shows the cumulative distribution function of the measured queueing
(q) aggregated by transaction type, which is a result of the position of the lines.

Figure 6 shows how the different average durations (in red) influence the pre-
execution delay (in blue) when using AJITTS: again, TU transactions (TUa) are
scheduled much earlier than others, while MF transactions (MFa), for instance,
are only executed nearer the head of the queue. When compairing the results
regarding, for example, MF transactions, the average time during which these
are vulnerable to being aborted much smaller using AJITTS (110 ms) than us-
ing OPT (562 ms). This is also the case for TR and TO transactions. However,
for TU transactions queueing actually increases using AJITTS. This is a conse-
quence of ensuring that certification does not go idle. As expected, the net effect
is still a reduced abort rate.

Considering different values of β shapes the workload: higher βs simulate
less available resources and vice-versa. Figure 7 shows how AJITTS leverages
available resources significantly better than OPT. In particular, the less available
resources, the more OPT’s throughput decreases relatively to AJITTS.

4 Conclusion

Although increasingly popular and often used, optimistic concurrency control
may lead, with more demanding workloads, to a large number of conflicts and
aborted transactions. This endangers fairness and reduces usable throughput.
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(blue), execution latency (red), and queueing for certification (brown). Columns MFa,
TRa, TOa and TUa refer to an execution of the AJITTS protocol, while the others
refer to an execution of the OPT protocol.

Previous attempts at tackling this problem required workload-specific configu-
ration and would still impact peak throughput [1].

With AJITTS, the adaptive just-in-time transaction scheduler, we provide a
solution that does not require workload specific configuration and adapts in run-
time to current workload and resource availability conditions. This is achieved
by delaying transaction execution, for each transaction individually based on the
estimated time to complete and current queueing within the system.

AJITTS was then evaluated using a simulation model driven by traces from
TPC-E running on MySQL, demonstrating that it clearly outperforms the base-
line protocol. In fact, in addition to reduced aborts, it actually improves peak
throughput even if it throttles transaction execution. This is the consequence of
using available resources better.
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