View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by ScholarlyCommons@Penn

University of Pennsylvania
ScholarlyCommons

UnNIVERSITY of

Departmental Papers (CIS) Department of Computer & Information Science

4-2016

Scalable Verification of Linear Controller Software

Junkil Park

University of Pennsylvania, parkl1@cis.upenn.edu

Miroslav Pajic

Insup Lee

University of Pennsylvania, lee@cis.upenn.edu

Oleg Sokolsky
University of Pennsylvania, sokolsky@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

b Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation
Junkil Park, Miroslav Pajic, Insup Lee, and Oleg Sokolsky, "Scalable Verification of Linear Controller Software", . April 2016.

22nd International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2016), Eindhoven, The Netherlands,
April 2-8,2016

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/815

For more information, please contact repository@pobox.upenn.edu.

https://core.ac.uk/display/76393737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F815&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F815&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F815&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F815&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fcis_papers%2F815&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F815&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.etaps.org/index.php/2016/tacas
http://repository.upenn.edu/cis_papers/815
mailto:repository@pobox.upenn.edu

Scalable Verification of Linear Controller Software

Abstract

We consider the problem of verifying software implementations of linear time-invariant controllers against
mathematical specifications. Given a controller specification, multiple correct implementations may exist,
each of which uses a different representation of controller state (e.g., due to optimizations in a third-party code
generator). To accommodate this variation, we first extract a controller's mathematical model from the
implementation via symbolic execution, and then check input-output equivalence between the extracted
model and the specification by similarity checking. We show how to automatically verify the correctness of C
code controller implementation using the combination of techniques such as symbolic execution, satisfiability
solving and convex optimization. Through evaluation using randomly generated controller specifications of
realistic size, we demonstrate that the scalability of this approach has significantly improved compared to our
own earlier work based on the invariant checking method.

Disciplines
Computer Engineering | Computer Sciences

Comments
22nd International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2016), Eindhoven, The Netherlands, April 2-8, 2016

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/815

http://www.etaps.org/index.php/2016/tacas
http://repository.upenn.edu/cis_papers/815?utm_source=repository.upenn.edu%2Fcis_papers%2F815&utm_medium=PDF&utm_campaign=PDFCoverPages

Scalable Verification of Linear Controller
Software

Junkil Park!, Miroslav Pajic?, Insup Lee', and Oleg Sokolsky!

! Department of Computer and Information Science, University of Pennsylvania
{park11l, lee, sokolsky}@cis.upenn.edu
2 Department of Electrical and Computer Engineering, Duke University
miroslav.pajic@duke.edu

Abstract. We consider the problem of verifying software implementa-
tions of linear time-invariant controllers against mathematical specifica-
tions. Given a controller specification, multiple correct implementations
may exist, each of which uses a different representation of controller state
(e.g., due to optimizations in a third-party code generator). To accom-
modate this variation, we first extract a controller’s mathematical model
from the implementation via symbolic execution, and then check input-
output equivalence between the extracted model and the specification
by similarity checking. We show how to automatically verify the cor-
rectness of C code controller implementation using the combination of
techniques such as symbolic execution, satisfiability solving and convex
optimization. Through evaluation using randomly generated controller
specifications of realistic size, we demonstrate that the scalability of this
approach has significantly improved compared to our own earlier work
based on the invariant checking method.

1 Introduction

Control systems are at the core of many safety- and life-critical embedded appli-
cations. Ensuring the correctness of these control system implementations is an
important practical problem. Modern techniques for the development of control
systems are model driven. Control design is performed using a mathematical
model of the system, where both the controller and the plant are represented as
sets of equations, using well established tools, such as Simulink and Stateflow.
Verification of the control system and evaluation of the quality of control is
typically performed at the modeling level [3]. Once the control engineer is satis-
fied with the design, a software implementation of the controller is produced from
the model using a generator such as Simulink Coder. To ensure that the gen-
erated implementation of the controller is correct with respect to its model, we
ideally would like to have verified code generators that would guarantee that any
generated controller correctly implements its model. In practice, however, code
generators for control software are complex tools that are not easily amenable
to formal verification, and are typically offered as black boxes. Subtle bugs have
been found in earlier versions of commercially available code generators [22].

In the absence of verified code generators, it is desirable to verify instances of
generated code against their models. In this paper, we consider an approach to
perform such instance verification. Our approach is based on extracting a model
from the controller code and establishing equivalence between the original and
the extracted models. We limit our attention to linear time-invariant (LTI) con-
trollers, since these are the most commonly used controllers in control systems.
In such controllers, relations between the values of inputs and state variables,
and between state variables and outputs, are linear functions of input and state
variables with constant (i.e., time-invariant) coefficients.

Our technical approach relies on symbolic execution of the generated code.
Symbolic expressions for state and output variables of the control function are
used to reconstruct the model of the controller. The reconstructed model is then
checked for input-output equivalence between the original and reconstructed
model, using the well-known necessary and sufficient condition for the equiva-
lence of two minimal LTT models. Verification is performed using real arithmetic.
We account for some numerical errors by allowing for a bounded discrepancy be-
tween the models. We compare two approaches for checking the equivalence; one
reduces the equivalence problem to an SMT problem, while the other uses a
convex optimization formulation. We compare equivalence checking to an alter-
native verification approach introduced in [23], which converts the original LTI
model into input-output based code annotations for verification at the code level.

The paper is organized as follows. Section 2 provides necessary background on
LTI systems. Section 3 introduces the approach based on code annotations. Sec-
tion 4 presents model extraction from code, followed by the equivalence checking
in Section 5. Section 6 evaluates the performance of the approaches. In Sections 7
and 8, we provide a brief overview of related work and conclude the paper.

2 Preliminaries

In this section, we present preliminaries on linear controllers and the structure
of linear controller implementations (e.g., step function generated by Embedded
Coder). We also describe a couple of motivating examples and the notations used
in this paper.

The role of feedback controllers is to ensure the desired behavior of the closed-
loop systems by computing inputs to the plants based on previously measured
plant outputs. We consider linear LTI controllers and assume that the speci-
fications (i.e., models) of the controllers are given in the standard state-space
representation form

Zjt1 = Az, + Buy
vr = Czi + Dug.

(1)
where u; € R? denotes the input vector to the controller at time k, y, € R™
denotes the output vector of the controller at time k, z € R™ denotes the
state vector of the controller. In addition, the size of the controller state n is

referred to as the size of the controller and we use a common assumption that the
specified controller has minimal realization [26]; this implies that n is also the
degree of the controller (i.e., the degree of the denominator of its characteristic
polynomial). Note that the matrices A € R"*" B € R"*P, C € R"™*" and
D € R™*P together with the initial controller state zg completely specify an
LTT controller. Thus, we will let 3(A, B, C,D, zg) denote an LTI controller, or
simply write (A, B, C,D) when the initial controller state zg is zero.

The model of LTI controllers can be implemented in software as a function
that takes as input the current state of the controller and a set of input sensor
values, and computes control output (i.e., inputs applied to the plant) and the
new state of the controller. We refer to this function as the step function. The
step function is called by the control software periodically, or whenever new
sensor measurements arrive. We assume that data is exchanged with the step
function through global variables.? In other words, the input, output and state
variables are declared in the global scope, and the step function reads both input
and state variables, and updates both output and state variables as the effect of
its execution. However, we note that this assumption does not critically limit our
approach because it can be easily extended to support a different code interface
for the step function.

2.1 Motivating Examples

We start by introducing two motivating examples that illustrate limitations of
the straightforward verification based on the mathematical model from (1). This
is caused by the fact that controller code might be generated by a code generator
whose optimizations may potentially violate the model, while still guaranteeing
the desired control functionality.

A Scalar Linear Integrator. We begin with an example from [23], where
the controller should compute a scalar control input uj as a scaled sum of all
previous measurements y; € R,i =0,1,....k — 1 —i.e.,

k—1

U = Zayi,k: >1, and, wo=0. (2)
i=0

If the Simulink Integrator block with Forward Euler integration is used to im-
plement this controller, the controller will be in the form of (1) as X(1, «, 1,0),
—i.e., zk41 = 2k + oy, ur, = 2. Note that another realization of this controller
could be f](l, 1,0,0) —ie., 241 = 2k + Yk, Uk = a2y, resulting in a lower com-
putational error due to finite precision computations [10]. Thus, for controller
specification (2) two different controller implementations could be produced by
different code generation tools, with the same input-output behavior while main-
taining scaled and unscaled sums, respectively, of the previous values for yy.

3 This convention is used by Embedded Coder, a code generation toolbox for Mat-
lab/Simulink.

Multiple-Input-Multiple-Output Controllers. The second example we will
consider is a Multiple-Input-Multiple-Output (MIMO) controller, maintaining
four states with two inputs and two outputs

—0.500311 0.16751 0.028029 —0.395599 —0.652079
0.850942 0.181639 —0.29276 0.481277 0.638183
zp+1 = | —0.458583 —0.002389 —0.154281 —0.578708 —0.769495 | zx+
1.01855 0.638926 —0.668256 —0.258506 0.119959
0.100383 —0.432501 0.122727 0.82634 0.892296

A
1.1149 0.164423
—1.56592 0.634384

+ | 1.04856 —0.196914 | uy (3)
1.96066 3.11571
—3.02046 —1.96087

B
_ | 0.283441 0.032612 —0.75658 0.085468 0.161088 ” (4)
Yk = 1 _0.528786 0.050734 —0.681773 —0.432334 —1.17988 | 2*

C

This controller requires 25 + 10 = 35 multiplications to update the state z in

each step function. Similarly, in the general case, for any controller with the
model in (1), n? + np = n(n + p) multiplications are needed to update the
controller’s state. On the other hand, consider the controller below that requires
only 5+ 10 = 15 multiplications to update its state

0.87224 0 0 0 0
0 0366378 0 0 0
B = 0 0 —0.540795 0 0 Zr+
0 0 0 —0.332664 0
0 0 0 0 —0.204322
A
0.822174 —0.438008
—0.278536 —0.824313
+ | 0.874484 0.858857 | uy, (5)
—0.117628 —0.506362
—0.955459 —0.622498
B
—0.793176 0.154365 —0.377883 —0.360608 —0.142123] .
Y= 0503767 —0.573538 0.170245 —0.583312 —0.56603 | “* (©6)

&
In general, when a matrix A in (1) is diagonal, only n 4+ np = n(p + 1) multi-
plications are performed to update zy in each step function.
In this example, the controllers X and X are similar, meaning that if the
same inputs yj are delivered to both controllers, the outputs of the controllers

4 We formally define the similarity transform in Section 5.

will be identical for all k, although the states maintained by the controllers
will most likely be different. As a result, although it does not obey the state
evolution of the initial controller X, the ‘diagonalized’ controller b)) provides the
same control functionality as X at a significantly reduced computational cost —
making it more suitable for embedded applications.

2.2 Problem Statements

The introduced examples illustrate that code generation tools for embedded sys-
tems could produce more efficient code that deviates from the initial controller
model as specified in (1), while being functionally correct from the input-output
perspective. Consequently, in this work we will focus on verification methods that
facilitate reasoning about the correctness of linear controllers without relying on
the state-space representation of the controller. We will compare our approach
with a verification approach we introduced in [23] which, to enable verification
at the code level, converts the original LTT model into input-output code annota-
tions based on the controllers’ transfer functions. Thus, we start by providing an
overview of the code annotation method for LTT controllers introduced in [23].

3 Overview of Invariant-based Approach

In [23], we introduced an approach for verification of LTI controllers using the
controllers’ transfer functions to provide input-output based invariants for a
controller defined as X' = (A, B, C, D). The controller’s transfer function G(z),
defined as G(z) = 58 = C(zI, — A)"'B + D, where U(z) and Y(z) denote
the z-transforms of the signals uy and yj respectively, is a convenient way to
capture the dependency between the controller’s input and output signals. In
general, G(z) is an m X p matrix with each element G, ;(z) being a rational
function of the complex variable z. To simplify the notation in this summary,
we consider Single-Input-Single-Output (SISO) controllers, meaning that the
transfer function G(z) takes the form

Glz) = Bo+Biz " 4 4 Bz ™)

l+aiz7t 4+ oz’

where n is the size of the initial controller model (referred also as the degree
of the transfer function). This allows us to specify the dependency between the
controller’s input and output signals as the following difference equation [26]

Yr = Z Bittg—; — Z OGYk—i, (8)
i—0 i=1

with y, = 0,k < 0, because z9p = 0 and ux = 0, for £k < 0. Thus, for any
controller X' a linear invariant of the form in (8) can be used to specify the
relationship between controller inputs and outputs, which is invariant to any
similarity transformations [26].

4 Model Extraction from Linear Controller
Implementation

In order to verify a linear controller implementation against its specification, we
first extract an LTI model from the implementation (i.e., step function), and
then compare it to the specification (i.e., the initial model). To obtain an LTI
model from the step function, it is first necessary to identify the computation
of the step function based on the program semantics. By the computation of a
program, we mean how the execution of the program affects the global state.’
This is also known as the big-step transition relation of a program, which is the
relation between states before and after the execution of the program. In the
next subsection, we explain how to identify the big-step transition relation of
the step function via symbolic execution.

4.1 Symbolic Execution of Step Function

According to the symbolic execution semantics [18, 7, 6], we symbolically execute
the step function with symbolic inputs and symbolic controller state. When the
execution is finished, we examine the effect of the step function on the global
state where output and new controller state are produced as symbolic formulas.
Model extraction via symbolic execution may not be applicable to any arbi-
trary program (e.g., non-terminating program, file/network IO program). How-
ever, we argue that it is feasible when focusing on the linear controller imple-
mentations which are self-contained (i.e., no dependencies on external functions)
and have simple control flows (e.g., for the sake of deterministic real-time behav-
iors). During symbolic execution, we check if each step of the execution satisfies
certain rules (i.e., restrictions), otherwise it is rejected. The rules are as follows:
first of all, the conditions of conditional branches should be always evaluated to
concrete boolean values. We argue that the step functions of linear controllers
are unlikely necessary to branch over symbolic values such as symbolic inputs
or symbolic controller states. Moreover, in many cases, the upper bound of the
loops of step functions are statically fixed based on the size of the controllers,
so the loop condition can be evaluated to concrete values as well. This rule re-
sults in yielding the finite and deterministic symbolic execution path of the step
function. The second rule is that it is not allowed to use symbolic arguments
when calling the standard mathematical functions (e.g., sin, cos, log, exp) be-
cause the use of such non-linear functions may result in non-linear input-output
relation of the step function. Moreover, it is also not allowed to call external li-
braries (e.g., file/network I0 APIs, functions without definitions provided). This
rule restricts the step function to be self-contained and to avoid using non-linear
mathematical functions. Lastly, dereferencing a symbolic memory address is not
allowed because the non-deterministic behavior of memory access is undesirable
for controller implementations and may result in unintended information flow.

5 Note that we assume that data is exchanged with the step function via global vari-
ables.

As the result of the symbolic execution of the step function, the global vari-
ables are updated with symbolic formulas. By collecting the updated variables
and their new values (i.e., symbolic formulas), the big-step transition relation of
the step function can be represented as a system of equations; each equation is
in the following form

U(new) = f(vlaUQ7 s avt)

where t is the number of variables used in the symbolic formula f, v,v; are
the global variables, v("*) denotes that the variable v is updated with the
symbolic formula on the right-hand side of the equation, the variable without
the superscript “(new)” denotes the initial symbolic value of the variable (i.e.,
from the initial state before symbolic execution of the step function). We call
this equation transition equation.

For example, we consider symbolic execution for the step function in [24],
obtained from the model (5), (6); we illustrate the transition equations of the
step function as follows, replacing the original variable names with new shortened
names for presentation purpose only, such as x for LTIS DW.Internal DSTATE,
u for LTIS U.u, and y for LTIS_Y.y:

x[0]"™) = ((0.87224 - x[0]) + ((0.822174 - u[0]) + (—0.438008 - u[1])))

x[1]"™) = ((0.366377 - x[1]) + ((—0.278536 - u[0]) + (—0.824312 - u[1])))

x[2] %) = ((—0.540795 - x[2]) + ((0.874484 - u[0]) + (0.858857 - u[1])))

x[3]"") = ((—0.332664 - x[3]) + ((—0.117628 - u[0]) + (—0.506362 - u[1])))

x[4] ") = ((—0.204322 - x[4]) + ((—0.955459 - u[0]) + (—0.622498 - u[1]))) (9)

y[0]™) = (((((—0.793176 - x[0]) + (0.154365 - x[1])) + (—0.377883 - x[2]))
+(—0.360608 - x[3])) + (—0.142123 - x[4]))

y[1]") = (((((0.503767 - x[0]) + (—0.573538 * -x[1])) + (0.170245 - x[2]))
+(—0.583312 - x[3])) + (—0.56603 - x[4])).

4.2 Linear Time-Invariant System Model Extraction

To extract an LTI model from the obtained transition equations, we first de-
termine which variables are used to store the controller state. To do this, we
examine the data flow among the variables which appear in the equations. Let
Viused be the set of used variables which appears on the right-hand side of the
transition equations. Let Vipdateqd be the set of updated variables which appears
on the left-hand side of the transition equations. As the interface of the step func-
tion, we assume that the sets of input and output variables are given, which are
denoted by Vippur and Vouiput, respectively. We define the set of state variables
Vstate as
‘/;tate - (Vupdated \ Voutput) U (Vused \ ‘/input)~

For example, from the transition equations (9), x[0], x[1], x[2], x[3] and x[4]
are identified as controller state variables as given the input variables u[0] and
u[1], and the output variables y[0] and y[1].

The next step is to convert the transition equations into a canonical form.
We fully expand the expressions on the right-hand side of the transition equa-
tions using the distributive law. The resulting expressions are represented in the

form of the sum of products without containing any parentheses. We check if the
expressions equations are linear (i.e., each product term should be the multipli-
cation of a constant and a single variable), and otherwise, it is rejected. Finally,
each transition equation is represented as the following canonical form

™) = vy 4 cavg + -+ - + vy

where t is the number of product terms, v € Vipdateq is the updated variable,
v; € Vyseqa are the used variables, and ¢; € R are the coefficients. When con-
verting the transition equations into canonical form, we regard floating-point
arithmetic expressions as real arithmetic expressions. The analysis of the dis-
crepancy between them is left for future work. Instead, in the next section, the
discrepancy issue between two LTT models due to numerical errors of floating-
point arithmetic is addressed as the first step toward the full treatment of the
problem.

Since the transition equations in canonical form are a system of linear equa-
tions, we finally rewrite the transition equations as matrix equations. In order
to do this, we first define the input variable vector u = vec(Vipput), the output
variable vector y = vec(Voutput) and the state variable vector x = vec(Vsiate)
where vec(V) denotes the vectorization of the set V' (e.g., vec({v1,v2,v3}) =
[v1,v9,v3]T). This allows for rewriting each transition equation in terms of the
state variable vector x and the input variable vector u as

p(new) — [c1,¢2,. .., cplx + [di,da,. .., dylu

where n is the length of the state variable vector, p is the length of the input
variable vector and c;,d; € R are constants. Finally, we rewrite the transition
equations as two matrix equations as follows

x("%) = Ax + Bu
y(e®) = Cx + Du

where A € R™" B e R*™?, C € R™*" D € R™ P and for any vector
v = [v1,...v¢T, we define v("¢®) = [vgmw), . 7Ut(new)]T.

For example, consider the transition equation about y[0]"“*) in (9), which is
represented in canonical form, and then rewritten as a vector equation (i.e., equa-

tion in terms of the state and the input variable vectors) as follows

y[0]™*) = (((((—0.793176 - x[0]) + (0.154365 - x[1])) + (—0.377883 - x[2]))
+(—0.360608 - x[3])) 4 (—0.142123 - x[4]))
= —0.793176 - x[0] + 0.154365 - x[1] + —0.377883 - x[2)
+ — 0.360608 - x[3] + —0.142123 - x[4]
= [—0.793176,0.154365, —0.377883, —0.360608, —0.142123] - x +[0,0] - u

where x = [x[0],x[1],x[2],x[3],x[4]]*, and u = [u[0],u[t]]T. Converting each
transition equation (9) into the corresponding vector equation, we finally recon-
struct the LTI model (i.e., same as (5) (6)) from the step function of [24].

Remark 1. In general, the size of the extracted model 32 may not be equal to the
size of the initial controller model 3 from (1) (i.e., n). As we assume that 3 is
minimal, if the obtained model has the size less than n it would clearly have to
violate input-output (IO) requirements of the controller. However, if the size of 3!
is larger than n, we consider a controllable and observable subsystem computed
via Kalman decomposition [26] from the extracted model, as the 33(A, B, C, D)
model extracted from the code. Note that 3 is minimal in this case, and thus
its size has to be equal to n to provide IO conformance with the initial model.

5 Input-Output Equivalence Checking between Linear
Controller Models

In order to verify a linear controller implementation against an LTT specifica-
tion, in the previous section we described how to extract an LTI model from the
implementation. This section introduces a method to check input-output (10)
equivalence between two linear controller models: (1) the original LTI specifica-
tion and (2) the LTI model extracted from the implementation.

To check the IO equivalence between two LTT models, we exploit the fact that
two minimal LTT models with the same size are 10 equivalent if and only if they
are similar to each other. Two LTT models (A, B,C,D) and 3(A,B,C,D)
are said to be similar if there exists a non-singular matrix T such that

A = TAT !, B = TB, c=cT!, and D=D (10)

where T is referred to as the similarity transformation matriz [26]. Thus, given
two minimal LTT models, the problem of equivalence checking between the mod-
els is reduced to the problem of finding a similarity transformation matrix for
the models. The rest of this section explains how to formulate this problem as a
satisfiability problem and a convex optimization problem.

5.1 Satisfiability Problem Formulation

We start by describing an approach to formulate the problem of finding similarity
transformation matrices as the satisfiability problem instance when two LTI
models 3(A,B,C,D) and f](A, B, C, f)) are given. Since existing SMT solvers
hardly support matrices and linear algebra operations, we encode the similarity
transformation matrix T as a set of scalar variables {7} ; | 1 <4,j < n} where
T;,; is the variable to represent the element in the i-th row and j-th column of
the matrix T. The following constraints rephrase the equations of (10) in an
element-wise manner

A A (Z ATy = 3 A) A A (B 5 B)

1<i<n1<j<n \1<k<n 1<k<n 1<i<n 1<j<n 1<k<n

/\ /\ (Z CA'i,ka,j —Cm-) A /\ /\ Dm‘ =D, ;

1<i<n 1<j<n \1<k<n 1<i<n 1<j5<n

It is important to highlight that although a similarity transform always re-
sults in an 10 equivalent new controller, due to finite-precision computation of
the code generator performing controller optimization, it is expected that the
produced controller will slightly differ from a controller that is similar to the
initial controller. Consequently, there is a need to extend our input-output in-
variants for the case with imprecise specification of the similarity transform.
To achieve this, given error bound e, the following constraints extends (11) to
tolerate errors up to error bound €

/\ /\ —e< Z Ai,ka,j — Z TikArj | <e€

1<i<n 1<5<n 1<k<n 1<k<n
/\ /\ —e< B;; — E TixBr,j | <e€
AN N\ —e<| DD Cialiy | —Cij<e
1<i<n1<j<n 1<k<n

/\ /\ —GSf)i,j—Di,jSG

1<i<n 1<5<n

For example, suppose that the original LTI model 3(A, B, C, D) from (3)(4),
the reconstructed model from the implementation 33(A, B, C, D) from (5)(6) and
the error bound ¢ = 10~% are given. Having the problem instance formulated

s (12), the similarity transformation matrix T for those models can be found
using an SMT solver which supports the quantifier-free linear real arithmetic,
QF_LRA for short. Due to the lack of space, only the first row of T is shown here

445681907965836469807842159338
Tig=— ~ —0.5443991
b 818667375305282643804030465563 (0-544399156750667)

135442022883031921128620509482
12 = = §13667375305282643804030465563 (= - 165442039801384)

198172776374831449251211655628
14 = §18667375305282643804030465563 U 242007461044165)

351256050550998919211978953100
Tie= ~ 818667375305282643804030465563 (% —0.429058064513855)

476345345040634696989970420590
Tis = ~ 818667375305282643804030465563 (> —0.581854284748456)

Since, for the theory of real numbers, SMT solvers use the arbitrary-precision
arithmetic when calculating answers, each element of T is given as a fractional
number of numerous digits. For instance, although it is not displayed here, T5 4 in
this example is a fraction whose numerator and denominator are numbers with
more than one hundred digits. Thus, due to the infinite precision arithmetic
used by SMT solvers, the scalability of the SMT formulation-based approach is
questionable. This illustrates the need for a more efficient approach for similarity
checking, and in the next subsection we will present a convex optimization-based
approach as an alternative method.

5.2 Convex Optimization Problem Formulation

The idea behind a convex optimization based approach is to use convex op-
timization to minimize the difference between the initial model and the model
obtained via a similarity transformation from the model extracted from the code.
Specifically, we formulate the equivalence checking for imprecise specifications
as a convex optimization problem defined as

variables e € R, T € R™*"
minimize e

subject to € <e,

‘AT - TAH <e,

B8 <.

for | =

b o] =

For example, given two LTI models (A, B, C, D) from (3)(4) and (A, B, C, D)
from (5)(6) and the error bound e = 107°, by (13), the similarity transformation
matrix T can be found using the convex optimization solver CVX as follows

—0.5443990427 —0.1654425774 0.2420672805 —0.4290576934 —0.5818538874
—0.4440654044 —0.7588435418 0.1765807738 0.2799578419 0.5647456751
T = | —0.588433439 —0.2004321431 0.6773771193 0.4815317446 0.1449186163
0.9314576739 —0.0459172638 0.6095691172 0.3808322795 0.8653864392
—0.2372386619 0.5190687755 0.8165534522 —0.1493619803 0.1461696487

In addition, the original similarity transformation matrix T,,.; used in the
actual transformation from 3 to X is

—0.5443991568 —0.1654420598 0.242067461 —0.4290580645 —0.5818542847
—0.4440652236 —0.7588431653 0.1765807449 0.279957637 0.564745456
Tori = | —0.5884339121 —0.2004321022 0.677376781 0.4815316264 0.144918173
0.9314574825 —0.0459170889 0.6095698017 0.3808324602 0.8653867983
—0.2372380836 0.5190691678 0.816552622 —0.1493625727 0.1461689364

resulting in the difference between two matrices equal to

0.000000114 0.0000005176 0.0000001806 0.0000003711 0.0000003973
0.0000001809 0.0000003766 0.000000029 0.0000002049 0.0000002191
|T—Tori| = | 0.0000004731 0.0000000408 0.0000003384 0.0000001182 0.0000004433
0.0000001914 0.0000001749 0.0000006844 0.0000001807 0.0000003591
0.0000005783 0.0000003923 0.0000008302 0.0000005924 0.0000007123

6 Evaluation

To evaluate our verification approach described in Section 4 and Section 5, we
compared it to our earlier work based on invariant checking [23].

C code Symbolic s
Transition Model Extracted
(the step > executor —)
YR T (PathCrawler) equations extractor LTI model
5 . 10 equivalence Verification
Specification < checker 3 result
(LTI model) | (using either (ves/no)
CVC4 or CVX) Y

Fig. 1. The verification toolchain for the similarity checking-based approach.

6.1 Verification Toolchain

We implemented an automatic verification framework (presented in Fig. 1) based
on the proposed approach described in Section 4 and Section 5. We refer to
this approach as similarity checking (SC)-based approach. Given a step function
(i.e., C code), we employ the off-the-shelf symbolic execution tool PathCrawler [32]
to symbolically execute the step function and generate a set of transition equa-
tions. The model extractor which implements the method in Section 4.2 extracts
an LTI model from the transition equations. Finally, the equivalence checker
based on the method in Section 5 decides the similarity between the extracted
LTI model and the given specification (i.e., LTI model), and produces the ver-
ification result. The equivalence checker uses either the SMT solver CVC4 [4]6
or the convex optimization solver CVX [14] depending on the formulation em-
ployed, which is described in Section 5.

For the invariant checking (IC)-based approach described in Section 3, we
use the toolchain Frama-C/Why3/Z3 to verify C code with annotated controller
invariants [23]. The step function is annotated with the invariants as described in
Section 3. Given annotated C code, Frama-C/Why3 [9, 5] generates proof obli-
gations as SMT instances. The SMT solver Z3 [11]7 solves the proof obligations
and produces the verification result (see [23] for more details).

6.2 Scalability Evaluation

To evaluate the SC-based approach compared to the IC-based approach, we
randomly generate stable linear controller specifications (i.e., the elements of
¥(A,B,C,D)). Since we observed that the controller dimension n dominates
the performance (i.e., running time) of both approaches, we vary n from 2 to
14, and generate three controller specifications for each n. For each controller
specification, we employ the code generator Embedded Coder to generate the
step function in C. Since we use the LTT system block of Simulink for code gener-
ation, the structure of generated C code is not straightforward, having multiple

5 CVC4 was chosen among other SMT solvers because it showed the best performance
for our QF_LRA SMT instances.

7 73 was chosen among other SMT solvers because it showed the best performance
for the generated proof obligations in our experiment.

, The average running time of the front-ends of both approaches

10 T T T T T ! ! !
Il SC-base 1
o [C-based (B,) ||
% 103L [!C-based (1B",)
s 102: [1!C-based (IB:‘SW)]
g : [JIC-based (IB",) :
S 3
@ 10 ¢
G]
£ 10°]
10'1 I | 1 L L !]

6 7 8 9 10 11 12 13 14

n

Fig. 2. The average running time of the front-ends of both SC-based and IC-based
approaches (with the log-scaled y-axis)

loops and pointer arithmetic operations as illustrated in the step function [24].
This negatively affects the performance of the IC-based approach for reasons
to be described later in this subsection. For a comparative evaluation, we use
both SC-based and IC-based approaches to verify the generated step function
C code against its specification. For each generated controller, we checked that
IC-based and SC-based approaches give the same verification result, as long as
both complete normally.

To thoroughly compare both approaches, we measure the running time of
the front-end and the back-end of each approach separately. By the front-end,
we refer to the process from parsing C code to generating proof obligations to be
input for constraint solvers. The front-end of the SC-based approach includes the
symbolic execution by PathCrawler and the model extraction, while the front-
end of the IC-based approach is processing annotated code and generating proof
obligations by Frama-C/Why3. On the other hand, by the back-end, we refer to
the process of constraint solving. While the back-end of the SC-based approach
is the 10 equivalence checking based on either SMT solving using CVC4 or
convex optimization solving using CVX, the back-end of the IC-based approach
is proving the generated proof obligations using Z3.

We first evaluate the frond-end of both approaches (i.e., the whole verification
process until constraint solving). Fig. 2 shows that the average running time of
the front-ends of both approaches, where missing bars indicate no data due
to the lack of scalability of the utilized verification approach (e.g., the tool’s
abnormal termination or no termination for a prolonged time). Here, IB, 1
IBY, 1, 1B, and IBj, , denote the variations of annotating methods as
described in [23]. We observe that the running time of the IC-based approaches
exponentially increase as the controller dimension n increases, while the SC-
based approach remains scalable. The main reason for this is that the IC-based
approach requires the preprocessing of code [23], which is unrolling the execution
of the step function multiple times (e.g., 2n + 1 or 3n + 1 times) as well as

¢ The average running time of the back-ends of both approaches

10 T T T T T T T T T
Il SC-based (CVC4)
—_ Il SC-based (CVX)
3 104+ i /C-based (1B,) ||
‘_3 [|C-based (IB"2n+1)
g’ , [lC-based (IBan)
o 10°F [!C-based (IB"3n+1) B
@
[}
£ 1077 7
'2 L L | L | L L | L
10 2 3 4 5 6 7 8 9 10 11 12 13 14

n

Fig. 3. The average running time of the back-ends of both SC-based and IC-based
approaches (with the log-scaled y-axis)

unrolling each loop in the step function (n+1) times. Therefore, in contrast with
the SC-based approach, the IC-based approach needs to handle the significantly
increased lines of code due to unrolling, so it does not scale up.

Next, we evaluate the back-end of both approaches (i.e., constraint solving).
Fig. 3 shows the average running time of the back-ends of both approaches, where
missing bars result from the lack of scalability of either the constraint solver used
at this stage or the front-end tools. “SC-based (CVC4)” denotes the SMT-based
formulation while “SC-based (CVX)” denotes the convex optimization-based for-
mulation. Recall that the SC-based approach using CVC4 and the IC-based ap-
proaches employ the SMT solvers for constraint solving, which uses the arbitrary-
precision arithmetic. We observe that the running time of the back-ends of those
approaches exponentially increase as the controller dimension n increases be-
cause of the cost of the bignum arithmetic, while the SC-based approach using
CVX remains scalable.

7 Related Work

Recently, there has been much attention to research on high-assurance control
software for cyber physical systems (e.g., [28,1,21,20, 19,10, 12]). First of all,
there has been a line of work focused on robust controller software implemen-
tations. For example, in [28], a model-based simulation platform is presented to
analyze controllers’ robustness. In [1,21], the authors present a fixed-point de-
sign method for robust, stable, error-minimized controller implementations. [19]
presents a robustness analysis tool to analyze the uncertainties of measurements
and plant states. In [10, 12], the authors address the synthesis of fixed-point con-
troller software using SMT solvers. Moreover, there exists work on verifying the
control-related properties of Simulink models using theorem proving [2]. Yet, the
verification is done at the model level, not at the code level.

However, there has been less attention given to the code-level verification of
controller software. In [27, 20], the authors present equivalence checking between

Simulink diagrams and generated code. Yet, they are based on the compliance
of the structures between Simulink models and code, instead of observational
equivalence checking. In addition, there is a closely related work based on the
concept of proof-carrying code for control software [13,15,31,30]. The authors
propose the code annotations for control-related properties based on Lyapunov
functions, and introduce the PVS linear algebra libraries [15] to verify the prop-
erties. However, their focus is limited to only stability and convergence proper-
ties rather than the correctness of controller implementation against its model.
Moreover, their approaches require the control of code generators, which may
introduce intellectual property concerns. Our own earlier work [23] presents a
method to verify the correctness of controller implementations by annotating
the controllers’ invariants. However, the scalability of this method is challenged
for real controller implementations with large state dimensions.

Finally, the model extraction technique has been used in software verifica-
tion [8,16,17,29,25]. The authors in [8,16,17] extract finite state models from
implementations to facilitate software model checking. [29] and [25] apply the
symbolic execution technique to implemented source code to extract mathemat-
ical functional models and high-level state machine models, respectively.

8 Conclusion

We have presented an approach for the verification of linear controller implemen-
tations against mathematical specifications. By this, a higher degree of assurance
for generated control code can be provided without trusting a code generator.
We have proposed to use the symbolic execution technique to reconstruct math-
ematical models from linear time-invariant controller implementations. We have
presented a method to check input-output equivalence between the specification
model and the extracted model using the SMT formulation and the convex opti-
mization formulation. Through the evaluation using randomly generated specifi-
cation and code by Matlab, we showed that the scalability of our new approach
has significantly improved compared to our own eariler work. Future work in-
cludes the analysis of the effect of floating-point calculations in control code.

Acknowledgments. This work was supported in part by NSF CNS-1505799,
NSF CNS-1505701, and the Intel-NSF Partnership for Cyber-Physical Systems
Security and Privacy. This material is based on research sponsored by DARPA
under agreement number FA8750-12-2-0247. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied,
of DARPA or the U.S. Government. This research was supported in part by
Global Research Laboratory Program through the National Research Founda-
tion of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning
(2013K1A1A2A02078326) with DGIST.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Anta, A., Majumdar, R., Saha, 1., Tabuada, P.: Automatic verification of control

system implementations. In: Proc. 10th ACM International Conference on Embed-
ded Software. pp. 9-18. EMSOFT’10 (2010)

Araiza-Illan, D., Eder, K., Richards, A.: Formal verification of control systems’
properties with theorem proving. In: UKACC International Conference on Control
(CONTROL). pp. 244-249 (2014)

Astréom, K.J., Murray, R.M.: Feedback systems: an introduction for scientists and
engineers. Princeton university press (2010)

Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovi¢, D., King, T.,
Reynolds, A., Tinelli, C.: Cvc4. In: Computer aided verification. pp. 171-177.
Springer (2011)

Bobot, F., Filliatre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages. pp. 5364 (2011)

Botella, B., Gotlieb, A., Michel, C.: Symbolic execution of floating-point compu-
tations. Software Testing, Verification and Reliability 16(2), 97-121 (2006)
Clarke, L.: A system to generate test data and symbolically execute programs.
Software Engineering, IEEE Transactions on (3), 215-222 (1976)

Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S., Bby, R.,
Zheng, H.: Bandera: Extracting finite-state models from java source code. In: Soft-
ware Engineering, 2000. Proceedings of the 2000 International Conference on. pp.
439-448. IEEE (2000)

Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-c. In: Software Engineering and Formal Methods, pp. 233-247 (2012)
Darulova, E., Kuncak, V., Majumdar, R., Saha, I.: Synthesis of fixed-point pro-
grams. In: Proc. 11th ACM International Conference on Embedded Software. pp.
22:1-22:10. EMSOFT’13 (2013)

De Moura, L., Bjgrner, N.: Z3: An efficient smt solver. In: Tools and Algorithms
for the Construction and Analysis of Systems, pp. 337-340 (2008)

Eldib, H., Wang, C.: An SMT based method for optimizing arithmetic computa-
tions in embedded software code. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 33(11), 1611-1622 (2014)

Feron, E.: From control systems to control software. Control Systems, IEEE 30(6),
50-71 (2010)

Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming,
version 2.1. http://cvxr.com/cvx (Mar 2014)

Herencia-Zapana, H., Jobredeaux, R., Owre, S., Garoche, P.L., Feron, E., Perez,
G., Ascariz, P.: PVS linear algebra libraries for verification of control software
algorithms in C/ACSL. In: NASA Formal Methods, pp. 147-161 (2012)
Holzmann, G.J., H Smith, M.: Software model checking: extracting verification
models from source code. Software Testing, Verification and Reliability 11(2), 65—
79 (2001)

Holzmann, G.J., Smith, M.H.: An automated verification method for distributed
systems software based on model extraction. Software Engineering, IEEE Trans-
actions on 28(4), 364-377 (2002)

King, J.C.: Symbolic execution and program testing. Communications of the ACM
19(7), 385-394 (1976)

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

Majumdar, R., Saha, 1., Shashidhar, K., Wang, Z.: CLSE: Closed-loop symbolic
execution. In: NASA Formal Methods, pp. 356-370 (2012)

Majumdar, R., Saha, I., Ueda, K., Yazarel, H.: Compositional equivalence checking
for models and code of control systems. In: 52nd Annual IEEE Conference on
Decision and Control (CDC). pp. 1564-1571 (2013)

Majumdar, R., Saha, I., Zamani, M.: Synthesis of minimal-error control software.
In: Proc. 10th ACM International Conference on Embedded Software. pp. 123-132.
EMSOFT’12 (2012)

Mathworks: Bug Reports for Incorrect Code Generation,
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2015b
&keyword=Incorrect+Code+Generation

Pajic, M., Park, J., Lee, 1., Pappas, G.J., Sokolsky, O.: Automatic verification of
linear controller software. In: 12th International Conference on Embedded Software
(EMSOFT). pp. 217-226. IEEE Press (2015)

Park, J.: Step function example, http://dx.doi.org/10.5281/zenodo.44338

Pichler, J.: Specification extraction by symbolic execution. In: Reverse Engineering
(WCRE), 2013 20th Working Conference on. pp. 462-466. IEEE (2013)

Rugh, W.J.: Linear system theory. Prentice Hall (1996)

Ryabtsev, M., Strichman, O.: Translation validation: From simulink to c. In: Com-
puter Aided Verification. pp. 696-701. Springer (2009)

Sangiovanni-Vincentelli, A., Di Natale, M.: Embedded system design for automo-
tive applications. IEEE Computer (10), 42-51 (2007)

Wang, S., Dwarakanathan, S., Sokolsky, O., Lee, I.: High-level model extraction
via symbolic execution. Technical Reports (CIS) Paper 967, University of Penn-
sylvania, http://repository.upenn.edu/cis_reports/967 (2012)

Wang, T., Jobredeaux, R., Herencia, H., Garoche, P.L., Dieumegard, A., Feron,
E., Pantel, M.: From design to implementation: an automated, credible autocoding
chain for control systems. arXiv preprint arXiv:1307.2641 (2013)

Wang, T.E., Ashari, A.E., Jobredeaux, R.J., Feron, E.M.: Credible autocoding of
fault detection observers. In: American Control Conference (ACC). pp. 672-677
(2014)

Williams, N., Marre, B., Mouy, P., Roger, M.: Pathcrawler: Automatic gener-
ation of path tests by combining static and dynamic analysis. In: Dependable
Computing-EDCC 5, pp. 281-292. Springer (2005)

	University of Pennsylvania
	ScholarlyCommons
	4-2016

	Scalable Verification of Linear Controller Software
	Junkil Park
	Miroslav Pajic
	Insup Lee
	Oleg Sokolsky
	Recommended Citation

	Scalable Verification of Linear Controller Software
	Abstract
	Disciplines
	Comments

	tmp.1457625606.pdf.4CGdd

