38 research outputs found

    Seroepidemiological study of Q fever in domestic ruminants in semi-extensive grazing systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Q fever, a worldwide zoonotic disease caused by <it>Coxiella burnetii</it>, is endemic in northern Spain where it has been reported as responsible for large series of human pneumonia cases and domestic ruminants' reproductive disorders. To investigate pathogen exposure among domestic ruminants in semi-extensive grazing systems in northern Spain, a serosurvey was carried out in 1,379 sheep (42 flocks), 626 beef cattle (46 herds) and 115 goats (11 herds). Serum antibodies were analysed by ELISA and positive samples were retested by Complement Fixation test (CFT) to detect recent infections.</p> <p>Results</p> <p>ELISA anti-<it>C. burnetii </it>antibody prevalence was slightly higher in sheep (11.8 ± 2.0%) than in goats (8.7 ± 5.9%) and beef cattle (6.7 ± 2.0%). Herd prevalence was 74% for ovine, 45% for goat and 43% for bovine. Twenty-one percent of sheep flocks, 27% of goat and 14% of cattle herds had a <it>C. burnetii </it>seroprevalence ≄ 20%. Only 15 out of 214 ELISA-positive animals reacted positive by CFT. Age-associated seroprevalence differed between ruminant species with a general increasing pattern with age. No evidence of correlation between abortion history and seroprevalence rates was observed despite the known abortifacient nature of <it>C. burnetii </it>in domestic ruminants.</p> <p>Conclusions</p> <p>Results reported herein showed that sheep had the highest contact rate with <it>C. burnetii </it>in the region but also that cattle and goats should not be neglected as part of the domestic cycle of <it>C. burnetii</it>. This work reports basic epidemiologic patterns of <it>C. burnetii </it>in semi-extensive grazed domestic ruminants which, together with the relevant role of <it>C. burnetii </it>as a zoonotic and abortifacient agent, makes these results to concern both Public and Animal Health Authorities.</p

    Multiplex SERS Detection of Metabolic Alterations in Tumor Extracellular Media

    Get PDF
    The composition and intercellular interactions of tumor cells in the tissues dictate the biochemical and metabolic properties of the tumor microenvironment. The metabolic rewiring has a profound impact on the properties of the microenvironment, to an extent that monitoring such perturbations could harbor diagnostic and therapeutic relevance. A growing interest in these phenomena has inspired the development of novel technologies with sufficient sensitivity and resolution to monitor metabolic alterations in the tumor microenvironment. In this context, surface-enhanced Raman scattering (SERS) can be used for the label-free detection and imaging of diverse molecules of interest among extracellular components. Herein, the application of nanostructured plasmonic substrates comprising Au nanoparticles, self-assembled as ordered superlattices, to the precise SERS detection of selected tumor metabolites, is presented. The potential of this technology is first demonstrated through the analysis of kynurenine, a secreted immunomodulatory derivative of the tumor metabolism and the related molecules tryptophan and purine derivatives. SERS facilitates the unambiguous identification of trace metabolites and allows the multiplex detection of their characteristic fingerprints under different conditions. Finally, the effective plasmonic SERS substrate is combined with a hydrogel-based three-dimensional cancer model, which recreates the tumor microenvironment, for the real-time imaging of metabolite alterations and cytotoxic effects on tumor cells.J.P. acknowledges an FPU fellowship from the Spanish Ministry of Science, Innovation and Universities. L.M.L.-M. acknowledges funding from the European Research Council (ERC AdG 787510, 4DbioSERS) and the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720). C.G.-A. acknowledges a Juan de la Cierva Fellowship from the Spanish Ministry of Science, Innovation and Universities (FJCI-2016-28887). The authors thank Dr. J. Calvo and Dr. D. Otaegui at CIC biomaGUNE for support with LC/ESI-HRMS measurements. The work of A.C. was supported by the Basque Department of Industry, Tourism and Trade (Elkartek), and the department of education (IKERTALDE IT1106-16, also participated by A. Gomez-Munoz), the BBVA foundation, the MINECO (SAF2016-79381-R (FEDER/EU); Severo Ochoa Excellence Program SEV-2016-0644-18-1; Excellence Networks SAF2016-81975-REDT), European Training Networks Project (H2020-MSCA-ITN-308 2016 721532), the AECC (IDEAS175CARR, GCTRA18006CARR), La Caixa Foundation (HR17-00094), and the European Research Council (starting Grant 336343, PoC 754627). CIBERONC was co-funded with FEDER funds and funded by ISCIII. A.M. acknowledges funding from the European Research Council (Consolidator Grant 819242) and the Spanish Ministry of Science, Innovation and Universities for the excellence program SEV-2015-049

    Identification of Androgen Receptor Metabolic Correlome Reveals the Repression of Ceramide Kinase by Androgens

    Get PDF
    Prostate cancer (PCa) is one of the most prevalent cancers in men. Androgen receptor signaling plays a major role in this disease, and androgen deprivation therapy is a common therapeutic strategy in recurrent disease. Sphingolipid metabolism plays a central role in cell death, survival, and therapy resistance in cancer. Ceramide kinase (CERK) catalyzes the phosphorylation of ceramide to ceramide 1-phosphate, which regulates various cellular functions including cell growth and migration. Here we show that activated androgen receptor (AR) is a repressor of CERK expression. We undertook a bioinformatics strategy using PCa transcriptomics datasets to ascertain the metabolic alterations associated with AR activity. CERK was among the most prominent negatively correlated genes in our analysis. Interestingly, we demonstrated through various experimental approaches that activated AR reduces the mRNA expression of CERK: (i) expression of CERK is predominant in cell lines with low or negative AR activity; (ii) AR agonist and antagonist repress and induce CERK mRNA expression, respectively; (iii) orchiectomy in wildtype mice or mice with PCa (harboring prostate-specific Pten deletion) results in elevated Cerk mRNA levels in prostate tissue. Mechanistically, we found that AR represses CERK through interaction with its regulatory elements and that the transcriptional repressor EZH2 contributes to this process. In summary, we identify a repressive mode of AR that influences the expression of CERK in PCa.A.G.-M. is funded by the MINECO (SAF2016-79695-R) and the department of education (IKERTALDE IT1106-16). V.T. is funded by FundaciĂłn Vasca de InnovaciĂłn e InvestigaciĂłn Sanitarias, BIOEF (BIO15/CA/052), the AECC J.P. Bizkaia and the Basque Department of Health (2016111109) and the MINECO RTI2018-097267-B-I00. The work of A. Carracedo is supported by the Basque Department of Industry, Tourism and Trade (Elkartek), the department of education (IKERTALDE IT1106-16) and health (RIS3), the MICINN (PID2019-108787RB-I00 (FEDER/EU); Severo Ochoa Excellence Accreditation SEV-2016-0644; Excellence Networks RED2018-102769-T), the AECC (GCTRA18006CARR), La Caixa Foundation (ID 100010434), under the agreement LCF/PR/HR17/ and the European Research Council (Consolidator Grant 819242). CIBERONC was co-funded with FEDER funds and funded by ISCIII

    Molecular method for the characterization of Coxiella burnetii from clinical and environmental samples: variability of genotypes in Spain

    Get PDF
    BACKGROUND: Coxiella burnetii is a highly clonal microorganism which is difficult to culture, requiring BSL3 conditions for its propagation. This leads to a scarce availability of isolates worldwide. On the other hand, published methods of characterization have delineated up to 8 different genomic groups and 36 genotypes. However, all these methodologies, with the exception of one that exhibited limited discriminatory power (3 genotypes), rely on performing between 10 and 20 PCR amplifications or sequencing long fragments of DNA, which make their direct application to clinical samples impracticable and leads to a scarce accessibility of data on the circulation of C. burnetii genotypes. RESULTS: To assess the variability of this organism in Spain, we have developed a novel method that consists of a multiplex (8 targets) PCR and hybridization with specific probes that reproduce the previous classification of this organism into 8 genomic groups, and up to 16 genotypes. It allows for a direct characterization from clinical and environmental samples in a single run, which will help in the study of the different genotypes circulating in wild and domestic cycles as well as from sporadic human cases and outbreaks. The method has been validated with reference isolates. A high variability of C. burnetii has been found in Spain among 90 samples tested, detecting 10 different genotypes, being those adaA negative associated with acute Q fever cases presenting as fever of intermediate duration with liver involvement and with chronic cases. Genotypes infecting humans are also found in sheep, goats, rats, wild boar and ticks, and the only genotype found in cattle has never been found among our clinical samples. CONCLUSIONS: This newly developed methodology has permitted to demonstrate that C. burnetii is highly variable in Spain. With the data presented here, cattle seem not to participate in the transmission of C. burnetii to humans in the samples studied, while sheep, goats, wild boar, rats and ticks share genotypes with the human population

    Integrative analysis of transcriptomics and clinical data uncovers the tumor- suppressive activity of MITF in prostate cancer

    Get PDF
    The dysregulation of gene expression is an enabling hallmark of cancer. Computational analysis of transcriptomics data from human cancer specimens, complemented with exhaustive clinical annotation, provides an opportunity to identify core regulators of the tumorigenic process. Here we exploit well-annotated clinical datasets of prostate cancer for the discovery of transcriptional regulators relevant to prostate cancer. Following this rationale, we identify Microphthalmia-associated transcription factor (MITF) as a prostate tumor suppressor among a subset of transcription factors. Importantly, we further interrogate transcriptomics and clinical data to refine MITF perturbation-based empirical assays and unveil Crystallin Alpha B (CRYAB) as an unprecedented direct target of the transcription factor that is, at least in part, responsible for its tumor-suppressive activity in prostate cancer. This evidence was supported by the enhanced prognostic potential of a signature based on the concomitant alteration of MITF and CRYAB in prostate cancer patients. In sum, our study provides proof-of-concept evidence of the potential of the bioinformatics screen of publicly available cancer patient databases as discovery platforms, and demonstrates that the MITF-CRYAB axis controls prostate cancer biology

    The Rare IL22RA2 Signal Peptide Coding Variant rs28385692 Decreases Secretion of IL-22BP Isoform-1, -2 and -3 and Is Associated with Risk for Multiple Sclerosis.

    Get PDF
    The IL22RA2 locus is associated with risk for multiple sclerosis (MS) but causative variants are yet to be determined. In a single nucleotide polymorphism (SNP) screen of this locus in a Basque population, rs28385692, a rare coding variant substituting Leu for Pro at position 16 emerged significantly (p = 0.02). This variant is located in the signal peptide (SP) shared by the three secreted protein isoforms produced by IL22RA2 (IL-22 binding protein-1(IL-22BPi1), IL-22BPi2 and IL-22BPi3). Genotyping was extended to a Europe-wide case-control dataset and yielded high significance in the full dataset (p = 3.17 × 10-4). Importantly, logistic regression analyses conditioning on the main known MS-associated SNP at this locus, rs17066096, revealed that this association was independent from the primary association signal in the full case-control dataset. In silico analysis predicted both disruption of the alpha helix of the H-region of the SP and decreased hydrophobicity of this region, ultimately affecting the SP cleavage site. We tested the effect of the p.Leu16Pro variant on the secretion of IL-22BPi1, IL-22BPi2 and IL-22BPi3 and observed that the Pro16 risk allele significantly lowers secretion levels of each of the isoforms to around 50%-60% in comparison to the Leu16 reference allele. Thus, our study suggests that genetically coded decreased levels of IL-22BP isoforms are associated with augmented risk for MS

    METTL1 promotes tumorigenesis through tRNA-derived fragment biogenesis in prostate cancer

    Get PDF
    Newly growing evidence highlights the essential role that epitranscriptomic marks play in the development of many cancers; however, little is known about the role and implications of altered epitranscriptome deposition in prostate cancer. Here, we show that the transfer RNA N-7-methylguanosine (m(7)G) transferase METTL1 is highly expressed in primary and advanced prostate tumours. Mechanistically, we find that METTL1 depletion causes the loss of m(7)G tRNA methylation and promotes the biogenesis of a novel class of small non-coding RNAs derived from 5'tRNA fragments. 5'tRNA-derived small RNAs steer translation control to favour the synthesis of key regulators of tumour growth suppression, interferon pathway, and immune effectors. Knockdown of Mettl1 in prostate cancer preclinical models increases intratumoural infiltration of pro-inflammatory immune cells and enhances responses to immunotherapy. Collectively, our findings reveal a therapeutically actionable role of METTL1-directed m(7)G tRNA methylation in cancer cell translation control and tumour biology

    Genetic manipulation of LKB1 elicits lethal metastatic prostate cancer

    Get PDF
    Gene dosage is a key defining factor to understand cancer pathogenesis and progression, which requires the development of experimental models that aid better deconstruction of the disease. Here, we model an aggressive form of prostate cancer and show the unconventional association of LKB1 dosage to prostate tumorigenesis. Whereas loss of Lkbl alone in the murine prostate epithelium was inconsequential for tumorigenesis, its combination with an oncogenic insult, illustrated by Pten heterozygosity, elicited lethal metastatic prostate cancer. Despite the low frequency of LKB1 deletion in patients, this event was significantly enriched in lung metastasis. Modeling the role of LKB1 in cellular systems revealed that the residual activity retained in a reported kinase-dead form, LKB1(K781), was sufficient to hamper tumor aggressiveness and metastatic dissemination. Our data suggest that prostate cells can function normally with low activity of LKB1, whereas its complete absence influences prostate cancer pathogenesis and dissemination

    Genome-wide significant association with seven novel multiple sclerosis risk loci

    Get PDF
    Objective: A recent large-scale study in multiple sclerosis (MS) using the ImmunoChip platform reported on 11 loci that showed suggestive genetic association with MS. Additional data in sufficiently sized and independent data sets are needed to assess whether these loci represent genuine MS risk factors. Methods: The lead SNPs of all 11 loci were genotyped in 10 796 MS cases and 10 793 controls from Germany, Spain, France, the Netherlands, Austria and Russia, that were independent from the previously reported cohorts. Association analyses were performed using logistic regression based on an additive model. Summary effect size estimates were calculated using fixed-effect meta-analysis. Results: Seven of the 11 tested SNPs showed significant association with MS susceptibility in the 21 589 individuals analysed here. Meta-analysis across our and previously published MS case-control data (total sample size n=101 683) revealed novel genome-wide significant association with MS susceptibility (p<5×10−8) for all seven variants. This included SNPs in or near LOC100506457 (rs1534422, p=4.03×10−12), CD28 (rs6435203, p=1.35×10−9), LPP (rs4686953, p=3.35×10−8), ETS1 (rs3809006, p=7.74×10−9), DLEU1 (rs806349, p=8.14×10−12), LPIN3 (rs6072343, p=7.16×10−12) and IFNGR2 (rs9808753, p=4.40×10−10). Cis expression quantitative locus effects were observed in silico for rs6435203 on CD28 and for rs9808753 on several immunologically relevant genes in the IFNGR2 locus. Conclusions: This study adds seven loci to the list of genuine MS genetic risk factors and further extends the list of established loci shared across autoimmune diseases

    Genome-wide significant association with seven novel multiple sclerosis risk loci

    Get PDF
    Objective: A recent large-scale study in multiple sclerosis (MS) using the ImmunoChip platform reported on 11 loci that showed suggestive genetic association with MS. Additional data in sufficiently sized and independent data sets are needed to assess whether these loci represent genuine MS risk factors. Methods: The lead SNPs of all 11 loci were genotyped in 10 796 MS cases and 10 793 controls from Germany, Spain, France, the Netherlands, Austria and Russia, that were independent from the previously reported cohorts. Association analyses were performed using logistic regression based on an additive model. Summary effect size estimates were calculated using fixed-effect meta-analysis. Results: Seven of the 11 tested SNPs showed significant association with MS susceptibility in the 21 589 individuals analysed here. Meta-analysis across our and previously published MS case-control data (total sample size n=101 683) revealed novel genome-wide significant association with MS susceptibility (p<5×10−8) for all seven variants. This included SNPs in or near LOC100506457 (rs1534422, p=4.03×10−12), CD28 (rs6435203, p=1.35×10−9), LPP (rs4686953, p=3.35×10−8), ETS1 (rs3809006, p=7.74×10−9), DLEU1 (rs806349, p=8.14×10−12), LPIN3 (rs6072343, p=7.16×10−12) and IFNGR2 (rs9808753, p=4.40×10−10). Cis expression quantitative locus effects were observed in silico for rs6435203 on CD28 and for rs9808753 on several immunologically relevant genes in the IFNGR2 locus. Conclusions: This study adds seven loci to the list of genuine MS genetic risk factors and further extends the list of established loci shared across autoimmune diseases
    corecore