1,192 research outputs found
Simulations on a potential hybrid and compact attosecond X-ray source based on RF and THz technologies
We investigate through beam dynamics simulations the potential of a hybrid
layout mixing RF and THz technologies to be a compact X-ray source based on
Inverse Compton Scattering (ICS), delivering few femtoseconds to
sub-femtosecond pulses. The layout consists of an S-band gun as electron source
and a dielectric-loaded circular waveguide driven by a multicycle THz pulse to
accelerate and longitudinally compress the bunch, which will then be used to
produce X-ray pulses via ICS with an infrared laser pulse. The beam dynamics
simulations we performed, from the photocathode up to the ICS point, allows to
have an insight in several important physical effects for the proposed scheme
and also in the influence on the achievable bunch properties of various
parameters of the accelerating and transverse focusing devices. The study
presented in this paper leads to a preliminary layout and set of parameters
able to deliver at the ICS point, according to our simulations, ultrashort
bunches (around 1 fs rms), at 15 MeV, with at least 1 pC charge and
transversely focused down to around 10 um rms or below while keeping a compact
beamline (less than 1.5 m), which has not yet been achieved using only
conventional RF technologies. Future studies will be devoted to the
investigation of several potential ways to improve the achieved bunch
properties, to overcome the limitations identified in the current study and to
the definition of the technical requirements. This will lead to an updated
layout and set of parameters.Comment: To be published in Nucl. Inst. Meth. A as proceedings of the EAAC17
conference 9 pages, 11 figure
Program transformations using temporal logic side conditions
This paper describes an approach to program optimisation based on transformations, where temporal logic is used to specify side conditions, and strategies are created which expand the repertoire of transformations and provide a suitable level of abstraction. We demonstrate the power of this approach by developing a set of optimisations using our transformation language and showing how the transformations can be converted into a form which makes it easier to apply them, while maintaining trust in the resulting optimising steps. The approach is illustrated through a transformational case study where we apply several optimisations to a small program
Potential applications of the dielectric wakefield accelerators in the SINBAD facility at DESY
Short, high-brightness relativistic electron bunches can drive ultra-high wakefields in the dielectric wakefield accelerators (DWFAs). This effect can be used to generate high power THz coherent Cherenkov radiation, accelerate a witness bunch with gradient two or three orders of magnitude larger than that in the conventional RF linear accelerators, introduce energy modulation within the driving bunch itself, etc. The paper studies potential applications of the DWFAs in the SINBAD facility at DESY. The simulations show that the ultra-short relativistic bunches from the SINBAD injector ARES can excite accelerating wakefields with peak amplitudes as high as GV/m at THz frequencies in proper DWFA structures. In addition, it illustrates that the DWFA structure can serve as a dechirper to compensate the correlated energy spread of the bunches accelerated by the laser plasma wakefield accelerator
The UA9 experimental layout
The UA9 experimental equipment was installed in the CERN-SPS in March '09
with the aim of investigating crystal assisted collimation in coasting mode.
Its basic layout comprises silicon bent crystals acting as primary
collimators mounted inside two vacuum vessels. A movable 60 cm long block of
tungsten located downstream at about 90 degrees phase advance intercepts the
deflected beam.
Scintillators, Gas Electron Multiplier chambers and other beam loss monitors
measure nuclear loss rates induced by the interaction of the beam halo in the
crystal. Roman pots are installed in the path of the deflected particles and
are equipped with a Medipix detector to reconstruct the transverse distribution
of the impinging beam. Finally UA9 takes advantage of an LHC-collimator
prototype installed close to the Roman pot to help in setting the beam
conditions and to analyze the efficiency to deflect the beam. This paper
describes in details the hardware installed to study the crystal collimation
during 2010.Comment: 15pages, 11 figure, submitted to JINS
A High Luminosity e+e- Collider to study the Higgs Boson
A strong candidate for the Standard Model Scalar boson, H(126), has been
discovered by the Large Hadron Collider (LHC) experiments. In order to study
this fundamental particle with unprecedented precision, and to perform
precision tests of the closure of the Standard Model, we investigate the
possibilities offered by An e+e- storage ring collider. We use a design
inspired by the B-factories, taking into account the performance achieved at
LEP2, and imposing a synchrotron radiation power limit of 100 MW. At the most
relevant centre-of-mass energy of 240 GeV, near-constant luminosities of 10^34
cm^{-2}s^{-1} are possible in up to four collision points for a ring of 27km
circumference. The achievable luminosity increases with the bending radius, and
for 80km circumference, a luminosity of 5 10^34 cm^{-2}s^{-1} in four collision
points appears feasible. Beamstrahlung becomes relevant at these high
luminosities, leading to a design requirement of large momentum acceptance both
in the accelerating system and in the optics. The larger machine could reach
the top quark threshold, would yield luminosities per interaction point of
10^36 cm^{-2}s^{-1} at the Z pole (91 GeV) and 2 10^35 cm^{-2}s^{-1} at the W
pair production threshold (80 GeV per beam). The energy spread is reduced in
the larger ring with respect to what is was at LEP, giving confidence that beam
polarization for energy calibration purposes should be available up to the W
pair threshold. The capabilities in term of physics performance are outlined.Comment: Submitted to the European Strategy Preparatory Group 01-04-2013 new
version as re-submitted to PRSTA
The blind spots of secularization
According to several international surveys Spain is among the western countries with the most negative views of Jews. While quantitative data on the topic accumulates, there is a significant lack of interpretative approaches that might explain the particular Spanish case. This paper presents the background, methodology and major results of a discussion group-based study on antisemitism, which was conducted in Spain in the autumn of 2009. The study identifies and locates in different socio-economic and ideological milieus the range of stereotypical discourses on Jews, Judaism and the Arab–Israeli conflict in Spain. Analysis of the group meetings shows that, despite growing secularization in Spanish society, the central explanatory variable for persisting and resurging antisemitism in this country is still religion in a broad cultural sense.Peer reviewe
Production of Medical Radioisotopes with High Specific Activity in Photonuclear Reactions with Beams of High Intensity and Large Brilliance
We study the production of radioisotopes for nuclear medicine in
photonuclear reactions or ()
photoexcitation reactions with high flux [()/s], small
diameter m and small band width () beams produced by Compton back-scattering of laser
light from relativistic brilliant electron beams. We compare them to (ion,np) reactions with (ion=p,d,) from particle accelerators like
cyclotrons and (n,) or (n,f) reactions from nuclear reactors. For
photonuclear reactions with a narrow beam the energy deposition in the
target can be managed by using a stack of thin target foils or wires, hence
avoiding direct stopping of the Compton and pair electrons (positrons).
isomer production via specially selected cascades
allows to produce high specific activity in multiple excitations, where no
back-pumping of the isomer to the ground state occurs. We discuss in detail
many specific radioisotopes for diagnostics and therapy applications.
Photonuclear reactions with beams allow to produce certain
radioisotopes, e.g. Sc, Ti, Cu, Pd, Sn,
Er, Pt or Ac, with higher specific activity and/or
more economically than with classical methods. This will open the way for
completely new clinical applications of radioisotopes. For example Pt
could be used to verify the patient's response to chemotherapy with platinum
compounds before a complete treatment is performed. Also innovative isotopes
like Sc, Cu and Ac could be produced for the first time
in sufficient quantities for large-scale application in targeted radionuclide
therapy.Comment: submitted to Appl. Phys.
Recent variability of the global ocean carbon sink
We present a new observation-based estimate of the global oceanic carbon dioxide (CO2) sink and its temporal variation on a monthly basis from 1998 through 2011 and at a spatial resolution of 1×1. This sink estimate rests upon a neural network-based mapping of global surface ocean observations of the partial pressure of CO2 (pCO2) from the Surface Ocean CO2 Atlas database. The resulting pCO2 has small biases when evaluated against independent observations in the different ocean basins, but larger randomly distributed differences exist particularly in high latitudes. The seasonal climatology of our neural network-based product agrees overall well with the Takahashi et al. (2009) climatology, although our product produces a stronger seasonal cycle at high latitudes. From our global pCO2 product, we compute a mean net global ocean (excluding the Arctic Ocean and coastal regions) CO2 uptake flux of −1.42 ± 0.53 Pg C yr−1, which is in good agreement with ocean inversion-based estimates. Our data indicate a moderate level of interannual variability in the ocean carbon sink (±0.12 Pg C yr−1, 1𝜎) from 1998 through 2011, mostly originating from the equatorial Pacific Ocean, and associated with the El Nino–Southern Oscillation. Accounting for steady state riverine and Arctic Ocean carbon fluxes our estimate further implies a mean anthropogenic CO2 uptake of −1.99 ± 0.59 Pg C yr−1 over the analysis period. From this estimate plus the most recent estimates for fossil fuel emissions and atmospheric CO2 accumulation, we infer a mean global land sink of −2.82 ± 0.85 Pg C yr−1 over the 1998 through 2011 period with strong interannual variation
Detection of vancomycin resistances in enterococci within 3 1/2 Hours
Vancomycin resistant enterococci (VRE) constitute a challenging problem in health care institutions worldwide. Novel methods to rapidly identify resistances are highly required to ensure an early start of tailored therapy and to prevent further spread of the bacteria. Here, a spectroscopy-based rapid test is presented that reveals resistances of enterococci towards vancomycin within 3.5 hours. Without any specific knowledge on the strain, VRE can be recognized with high accuracy in two different enterococci species. By means of dielectrophoresis, bacteria are directly captured from dilute suspensions, making sample preparation very easy. Raman spectroscopic analysis of the trapped bacteria over a time span of two hours in absence and presence of antibiotics reveals characteristic differences in the molecular response of sensitive as well as resistant Enterococcus faecalis and Enterococcus faecium. Furthermore, the spectroscopic fingerprints provide an indication on the mechanisms of induced resistance in VRE
- …
