
http://wrap.warwick.ac.uk

Original citation:
Kalvala, Sara and Warburton, R. L. M.. (2009) Program transformations using temporal
logic side conditions. ACM Transactions on Programming Languages and Systems,
Volume 31 (Number 4). Article number 14. ISSN 0164-0925

Permanent WRAP url:
http://wrap.warwick.ac.uk/47532

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:
"© ACM, 2009. This is the author's version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version was published in
ACM Transactions on Programming Languages and Systems, Volume 31 (Number 4),
(2009) http://doi.acm.org/10.1145/1516507.1516509 "

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/9560618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/47532
http://doi.acm.org/10.1145/1516507.1516509
mailto:publications@warwick.ac.uk

Program transformations using temporal logic

side conditions

Sara Kalvala and Richard Warburton
University of Warwick

David Lacey
XMOS Semiconductor

August 22, 2008

Abstract

This paper describes an approach to program optimisation based on
transformations, where temporal logic is used to specify side conditions,
and strategies are created which expand the repertoire of transformations
and provide a suitable level of abstraction. We demonstrate the power
of this approach by developing a set of optimisations using our transfor-
mation language and showing how the transformations can be converted
into a form which makes it easier to apply them, while maintaining trust
in the resulting optimising steps. The approach is illustrated through a
transformational case study where we apply several optimisations to a
small program.

1 Introduction

Significant effort in modern compiler development is spent implementing opti-
misations, which are often performed after an initial synthesis of low-level code
[ALSU07, App98, Muc97]. Optimisations are often classified as either local or
global. Local optimisations transform small segments of code, typically by pat-
tern matching and simple rewriting, while global optimisations exploit complex
chains of information and subtle patterns of execution. While such global opti-
misations are often difficult to identify in a program, the payback is sufficient
to motivate development of general and robust techniques to incorporate them
into working compilers. Furthermore, the complexity of the conditions at which
some global optimisations apply implies that significant care has to be taken to
ensure that they are not applied in a way that introduces errors in the program.
Thus, a precise, formal language for specifying these global optimisations is a
very useful addition to the arsenal of compiler designers.

The rewriting paradigm is particularly appropriate for describing optimisa-
tions, as rewrites express the transformation of the program and can usually
be specified succinctly and intuitively, with side conditions that describe when
the rewrite may be applied. In the case of local optimisations, side conditions

1

can are relatively easy to specify as they are purely syntactic. For global op-
timisations the situation is more complex, particularly for programs written
in imperative languages, as the conditions under which it is possible to apply
rewrites are harder to describe—they often depend on capturing some or all the
paths of execution through the program. Their specification needs to model se-
mantic information, which is not always easy to track, particularly when dealing
with the low-level representation of programs to which they are applied. The
obvious solution is to employ a rigorous language for expressing optimisations
that supports formal reasoning. However, such a language often raises the issue
about its actual applicability to realistic tasks: ‘toy’ languages often carry the
risk of not supporting the kinds of complex operations that practitioners would
actually like to perform with them. An effective tool to aid optimisation needs
to blend expressivity and rigour.

In this paper we propose a specification language for transformations capa-
ble of capturing many transformations found within optimising compilers for
imperative languages. The transformations apply to control flow graphs, which
represent the temporal nature of the program. We claim that the language is ex-
pressive enough to capture a variety of optimisations, and we support this claim
by presenting a catalogue of optimisations expressed in the language described.
The transformations described range from simple ones such as dead code elim-
ination (which checks if the result of a computation will ever be used later in
the program’s execution, see Section 8.1), and more complex ones such as lazy
code motion (which moves a computation to a different point in the program
to eliminate unnecessary calculations in loops, see Section 9.4). Other trans-
formations described in our framework include constant propagation, strength
reduction, branch elimination, skip elimination, loop fusion, partial redundancy
elimination, and lazy strength reduction.

It is not enough to have a library of very well understood and trusted op-
timisations: practitioners often design complex, new optimisations to improve
compilers for particular applications, and methodologies that can support such
development are very useful. In Section 5 we show how new transformations
can be assembled to implement special optimisations which arise while manip-
ulating a specific piece of code. The formal underpinning of the language aids
the verification of the soundness of such new transformations expressed in it.

Key to our approach is the blending of ideas from rewriting and tempo-
ral logic, which can aid reasoning about the soundness of the optimisations.
We have based the language of side conditions on CTL, a well-understood and
widely used temporal logic that allows side conditions to be checked mechani-
cally against the representation of a program. Furthermore, as the program to
be optimised is expressed in a language with a formal semantics, the soundness
of the transformations can also be proved rigorously, as has been shown previ-
ously [LJWF02, LJWF04]. We maintain that the methodology described here
supports the development of transformations, reasoning about the correctness
of the transformations, and application of these transformations to programs to
be optimised.

The structure of this paper is as follows: Section 2 introduces a simple

2

instr ::= skip
| var := expr
| if expr goto num
| goto num
| ret(expr)

expr ::= expr op expr
| num
| var

num ::= . . . , -2, -1, 0, 1, 2, . . .
var ::= x, y, z, . . .
op ::= +, ×, −, . . .

Figure 1: Grammar for instructions in the L0 programming language

programming language over which the transformations operate and the rep-
resentation of programs through control flow graphs. Section 3 explains the
background to the design of the transformation specification language while
Section 4 describes the syntax of the language. A case study showing how
transformations can be formulated is discussed in Section 5, while Section 6 de-
scribes the semantics of the language in detail. We describe how the approach is
used to identify loops within programs through an example of dominator anal-
ysis in Section 7. Transformation specifications are described in Section 8 and
Section 9. We then show how the process of applying transformations can be
mechanised in Section 10, and a discussion of the limitations of our approach is
presented in Section 11. In Section 12 we survey related work and finally add
some concluding remarks in Section 13.

2 The Source Language

2.1 The L0 programming language

The methodology for specifying transformations in this paper applies to a variety
of languages; we introduce a simple imperative language L0 to aid presentation.
This toy language is standard in its behaviour; a formal semantics for L0 can
be found elsewhere [Lac03]. The language is meant to exemplify compiler inter-
mediate representations rather than programming languages, since that is the
level at which optimisations are usually applied. Some features of even low-
level programming languages, such as function calls, exceptions, input/output
statements and pointers, have not been included in L0. Control structures are
written using jump statements instead of looping constructs. We assume the
instructions are labelled; if a goto or conditional statement refers to an instruc-
tion label greater than the length of the program then control jumps to the last
instruction.

An L0 program consists of a sequence of instructions where an instruction
can take one of five typical forms.

Definition 2.1 An instr is a single command of the form given in Fig. 1.

3

var i : integer;
var a : array 10 of array 3 of integer;

begin
i := 0;
while i < 10 do

a[i][1] := 0;
a[i][2] := 0;
i := i + 1

end;
end.

0: i := 0
1: if (i < 10) goto 14
2: temp1 := 1 * 1
3: temp2 := i * 3
4: temp3 := 1 + temp2
5: temp4 := temp3 + temp1
6: M[temp4] := 0
7: temp5 := 2 * 1
8: temp6 := i * 3
9: temp7 := 1 + temp6
10: temp8 := temp7 + temp5
11: M[temp8] := 0
12: i := i + 1
13: goto 1
14: ret 0

Figure 2: An example program in Pascal and its translation into L0

Definition 2.2 A program of length n (n ≥ 1) is a list I0, . . . , In−1 of instruc-
tions, where instruction In−1 is the only instruction of the form ret(e).

An example program in L0, corresponding to a small Pascal program which
clears two lines of an array, is presented in Fig. 2.

2.2 The control flow graph

The transformation approach introduced in this paper relies on the representa-
tion of programs as control flow graphs (CFGs), where each node corresponds to
an individual instruction in the program, except for designated Entry and Exit
nodes. The edges between nodes represent possible steps in the program between
the instructions. In order to facilitate transformations, labels are added to edges
of CFGs: edges that result from the condition in a conditional statement being
true are labelled branch, and all other edges are labelled seq to signify default
sequential execution. Fig. 3(b) shows an example CFG.

Formally, a CFG is defined as a triple consisting of a set of nodes, an edge
relation and a labelling function which labels each node with an instruction.

Definition 2.3 A CFG for a program I0, . . . , In−1 is the tuple 〈Nodes, Edges ⊆
Nodes×Nodes× {seq, branch}, I : Nodes→ Instr〉 where:

4

0: i := 0
1: j := 0
2: if i = 10 goto 6
3: j := i+j
4: i := i+1
5: goto 2
6: ret(j)

Entry

?
Sentry

i := 0

?
S0

j := 0

?
S1

if i = 10

?
?

branch

S2

j := i + j

?
S3

i := i + 1

?
S4

goto

-

S5

ret(j)

?
S6

Exit
Sexit

(a) (b)

Figure 3: A program in L0 and its control flow graph

Nodes = {Entry,N0, . . . , Nn−1, Exit}
Edges = {(Entry,N0, seq), (Nn−1, Exit, seq)}

∪ {(Ni, Ni+1, seq) | I(Ni) 6= goto , 0 ≤ i < n− 1}
∪ {(Ni, Nj , branch) | 0 ≤ i < n, 0 ≤ j < n, I(Ni) = if e goto j}
∪ {(Ni, Nn−1, branch) | 0 ≤ i < n, j < 0 ∨ j ≥ n, I(Ni) = if e goto j}
∪ {(Ni, Nj , seq) | 0 ≤ i < n, 0 ≤ j < n, I(Ni) = goto j}
∪ {(Ni, Nn−1, seq) | 0 ≤ i < n, j < 0 ∨ j ≥ n, I(Ni) = goto j}

I(N) =

{
Ii if N = Ni,

skip otherwise

All CFGs that are referred to within this paper have the additional property
of recoverability. A CFG is said to be recoverable if:

• only one node is associated with a ret instruction and this is the only
node whose successor is the Exit node;

• the Entry node has no predecessors;

• the Exit node has no successors;

• any node associated with a conditional has exactly two successors, one
edge of type seq and one of type branch;

• any node not associated with a conditional has exactly one successor con-
nected by an edge of type seq (apart from the Exit node).

5

Recoverability is a useful property since the transformation methodology
described here performs transformations on the CFG rather than the program
itself, and one would like to recover a program in L0 from the generated CFG.
Recoverability simplifies the process of converting a transformed CFG back into
an L0 program. In our work recoverability is preserved by ensuring that a
transformation is not applied if any of the above properties are violated by the
resulting CFG.

2.3 Paths through a control flow graph

The transformations introduced in Section 4 use side conditions which describe
properties about complete paths through a program. Complete paths from a
specified point n are sequences of connected nodes through a CFG from point
n to the Exit point. Accordingly, complete paths can be extracted from a CFG
using the following definition:

Definition 2.4 For a CFG G, the set of complete paths of a system from a
state n0 is denoted CPaths(n0,G) and consists of all finite sequences n0n1 . . . nk

such that ni → ni+1, for all ni with i < k and such that there does not exist
a nk+1 such that nk → nk+1. The notation x → y is used when ∃(n,m,) ∈
Edges|n = x,m = y.

2.4 Limitations of L0

We have restricted ourselves to a simple toy language because it allows a variety
of low-level programs to be written while still having a simple enough semantics
which allows proof of the soundness of the transformations (see [Lac03]). Some
simple language features could have been added, but this would only make the
proofs of soundness more tedious. More complex features, such as pointers and
exceptions, are discussed in Section 11, where we present some ideas on how our
methodology can be ported to real programming languages.

3 Designing a specification language for trans-
formations

3.1 General principles

In our quest to develop a language to specify optimisations which could both
be proved to be sound as well as be amenable to mechanical application on
programs, we were driven by several requirements:

1. it must be expressive enough to specify a large range of common compiler
optimisations;

2. it must be simple enough to facilitate formal analysis, and in particular
proofs of soundness of the transformations;

6

3. it must allow transformation specifications to be automatically applied to
programs without requiring any low level programming.

The approach we follow to satisfy these requirements is based on rewriting,
temporal logic, and model checking. Transformations are expressed in a lan-
guage that allows their rigorous proof of soundness, supports automatic checking
of the applicability of an optimisation to a program, and automates generation
of optimised programs.

3.2 Conditional rewriting

A rewrite typically consists of a left-hand side pattern that represents several
abstract syntax trees that match the pattern, and may contain several variables
which are given values by a particular match. These are then used to convert the
right hand side pattern into a syntax tree. The rewrite is applied by replacing
the tree that matches the left hand side with the tree created by the right hand
side.

Rewriting is a paradigm that is naturally suitable for formal analysis. Com-
piler optimisations frequently find common patterns within programs, based on
some static analysis or abstract interpretation and replace specific sequences
of program instructions by other sequences. However, it is rare that part of a
program should be rewritten solely based on a syntactic pattern; some more
information may be needed. Often, quite complicated program analysis is re-
quired to check whether a particular transformation can apply. A rewrite rule
can be extended by a condition that can be seen as a constraint on the possible
matches that are allowed on the left hand side of the rewrite. The conditional
rewriting paradigm is consequently appropriate for program transformation. In
this case the condition of a conditional rewrite should specify what program
analysis is needed to determine whether a transformation applies.

Conditional rewrites can be seen as having a left hand side pattern and a
condition, where both provide pre-conditions to performing a transformation
and can therefore be merged. One can generalise this to a bipartite notion of
transformation: an action that specifies how to transform a program in terms of
some free variables and a condition that shows what must hold of these variables
for the transformation to apply. The condition specifies the program analysis,
and binds the result of this analysis to variables. The rewrite rule then uses
this binding to instantiate its replacement pattern. A useful transformation
toolkit of the kind described here can be found in the Genesis system [Whi91]
where optimising transformations are specified in a specialised language called
GOSpeL. In this language one specifies patterns of code that can be optimised
and the program analysis required to check that the transformation is correct.

3.3 Temporal logic

We make use of temporal logic as a specification language for the side conditions
under which a transformation may apply. Temporal logics describe properties of

7

a system relative to a point in time (or in a particular state of the computation).
In our case, the points are nodes (or program points) on the CFGs. These are
abstractions of the real state of the program to be run. So a logical judgement
is of the form: φ @ n which states that the formula φ is satisfied at node n of
the CFG.

We base the language for expressing conditions on CTL (Computational
Tree Logic, [CES96]), which can express many optimisations while still being
efficient to model check. LTL is also efficiently checkable, however, specifications
of some optimisations, such as branch elimination and several forms of partial
redundancy elimination (shown in Section 9), are frequently easier to express
with branching quantification which LTL doesn’t allow.

We made some modifications to CTL in order to make it easier to express
properties of programs, such as the inclusion of past temporal operators (

←−
E and

←−
A). This allows one to intuitively specify classical compiler analyses: backward
analyses uses forward temporal operators, and forward analyses uses backward
temporal operators. These extensions for previous state operators have often
been included when attempting program analyses [Ste91]. We also extend the
next state operators (EX and AX) so that one can specify what kind of edge
they operate over. For example, the operators EXseq and AXbranch stand for
“there exists a next state via a seq edge” and “for all next states reached via a
branch edge” respectively.

3.4 Model checking

Steffen has previously recognised [Ste91, Ste93a] that traditional dataflow anal-
ysis and model checking may be used to perform comparable types of analysis.
We explore this analogy by using model checking as the technique for examining
applicability of transformations.

In our framework, a transformation consists of two parts: a list of actions
that change the program by adding or altering points in the CFG and a side
condition which specifies when the actions can be applied, written in a language
based on temporal logic. A transformation will be performed in the following
way:

1. a model checker is used to find a valuation σ that causes the formula φ to
be true of the CFG;

2. this valuation is used to perform the changes to the graph specified in the
list of actions.

There are four types of action: the replace action which replaces a node
with another sequence of nodes, the remove edge and add edge actions which
add and remove edges and the split edge action which inserts a node between
two other nodes joined by an edge.

The side condition language allows specification of global and local condi-
tions, combined with logical and temporal operators. Formulae are built up
from basic predicates that describe properties of nodes. First-order CTL is

8

used to specify properties of nodes and paths in the CFGs. The @ n notation
is used to specify that a CTL formula holds at node n. Two types of basic
predicates are used to obtain information about a node in a CFG: node(x) @ n
holds for a valuation σ if σ(x) = σ(n), and stmt(s) @ n holds whenever pattern
s matches the statement at node n. Not every element of a predicate needs to
be temporal in nature, some are global predicates that do not refer to any node
in particular. For example, the formula φ @ n ∧ conlit(c) states that φ holds at
n (a local property) and c is a constant literal (a global property).

4 The transformation language: TRANS

We have designed a language for expressing specifications, which we call TRANS,
that captures the features described in the previous section. The syntax of
TRANS is shown in Figure 4. We overload logical binders and use standard
CTL binding rules. The @ operator binds more weakly than operators on node
conditions.

The language is simple, yet can express many standard compiler optimisa-
tions, particularly with the introduction of strategies, which combine transfor-
mations to create more complex transformations. As an example of TRANS in
use, the constant copy propagation transformation is written as:

replace n with x := e[c]
if stmt(x := e[v]) ∧

←−
A (¬def(v) U stmt(v := c)) @ n ∧ conlit(c)

In this transformation (described in more detail in Section 8.2), if the content
at node n matches stmt(x := e[v]), and the only definition of v that reaches n
is v := c, then v can be replaced by c in the expression e (where e can be a
structured expression). This specification uses metavariables, namely n, x, e, c
and v, which stand for elements of the program. Within the TRANS language
e[c] denotes an expression containing c as an operand.

Rewriting is an important tool in this framework. The traditional way to
write conditional rewrites (where a node can be replaced by a sequence of nodes)
is as follows:

literal:pattern =⇒ pattern1;pattern2;. . . ;patternn

This notation is supported in our framework as syntactic sugar and mapped
into a replace action. For example, the conditional rewrite:

n : p =⇒ q1; q2; . . . ; qm,
A1, A2, . . . , Ak

if
φ ,

where p is the pattern to be matched to the statement at n, is an alternate

9

literal ::= metavar | num | exit | start | seq | branch
expr-pattern ::= literal

| expr-pattern op expr-pattern
| expr-pattern[expr-pattern]

pattern ::= if (expr-pattern)
| goto expr-pattern
| literal := expr-pattern
| skip
| ret(expr-pattern)

node-condition ::= node-condition ∨ node-condition
| node-condition ∧ node-condition
| ¬ node-condition
| ∃ metavar . node-condition
| [EX | AX |

←−−
EX |

←−−
AX][literal] (node-condition)

| [E | A |
←−
E |
←−
A] (node-condition U node-condition)

| node(literal)
| stmt(pattern)

side-condition ::= side-condition ∨ side-condition
| side-condition ∧ side-condition
| ¬ side-condition
| ∃ metavar . side-condition
| node-condition @ literal
| pred (literal1,. . . ,literaln)

action ::= replace literal with pattern1;pattern2;. . . ;patternn

| remove edge (literal,literal,literal)
| add edge (literal,literal,edge-type)
| split edge (literal,literal,pattern)

transform ::= action1,. . . ,actionn if side-condition
| MATCH side-condition IN transform
| APPLY ALL transform
| transform � transform
| transform THEN transform

Figure 4: The grammar of TRANS

10

syntax for the action:

replace n with q1; q2; . . . ; qm,
A1, A2, . . . , Ak

if
stmt(p) @ n ∧ φ

4.1 Macros

A macro definition provides a way to name commonly used formulae. Macros
are of the following general form

let p(−→x) , φ

The expression p(−→τ) in a formula represents the syntactic substitution φ[−→τ /−→x],
where each variable in −→x is replaced by the corresponding variable in −→τ . This
allows one to specify formulae that will be used in several different transforma-
tions. Free variables are used in some macros when all the uses of the variables
have specific denotations, such as loop head or loop tail.

As examples, two macros which match nodes that are connected and strongly
connected, respectively, to m can be written as: e.g.

let connected to(m) , E(True U node(m))
let strongly connected to(m) , E(True U node(m)) ∧

←−
E (True U node(m))

Macros support the definition of temporal operators eventually (F) and for-
ever (G) in terms of until operators in the standard way:

let EF (φ) , E(true U φ)
let AF (φ) , A(true U φ)
let EG(φ) , ¬AF (¬φ)
let AG(φ) , ¬EF (¬φ)

Before presenting the semantics of this language and further constructs which
aid specification of transformations, it may be useful to examine a simple ex-
ercise in optimisation, which relies on some well-known optimisations as well
as some which are hand-crafted to suit the purpose in hand. This will give a
flavour of the system and justify the design of the language.

5 An interactive optimisation exercise

We present a worked example where TRANS has been used to interactively
optimise a program and illustrate how transformations can be written in TRANS
that capture the steps one may wish to apply to optimise a program.

Our starting point is the code from Fig. 2, which has been generated from
Pascal source code. We add the syntax M[x] to L0 to represent array/memory

11

0: i := 0
1: if (i < 10) goto 12
2: temp2 := i * 3
3: temp3 := 1 + temp2
4: temp4 := temp3 + 1
5: M[temp4] := 0
6: temp6 := i * 3
7: temp7 := 1 + temp6
8: temp8 := temp7 + 2
9: M[temp8] := 0
10: i := i + 1
11: goto 1
12: ret 0

(a)

0: h := 0
1: if (h < 30) goto 8
2: temp4 := h + 2
3: M[temp4] := 0
4: temp8 := h + 3
5: M[temp8] := 0
6: h := h + 3
7: goto 1
8: ret 0

(d)

0: i := 0
1: if (i < 10) goto 10
2: temp2 := i * 3
3: temp4 := temp2 + 2
4: M[temp4] := 0
5: temp6 := i * 3
6: temp8 := temp6 + 3
7: M[temp8] := 0
8: i := i + 1
9: goto 1
10: ret 0

(b)

0: h := 2
1: if (h < 32) goto 7
2: M[h] := 0
3: temp8 := h + 1
4: M[temp8] := 0
5: h := h + 3
6: goto 1
7: ret 0

(e)

0: i := 0
1: h := 0
2: if (i < 10) goto 10
3: temp4 := h + 2
4: M[temp4] := 0
5: temp8 := h + 3
6: M[temp8] := 0
7: i := i + 1
8: h := h + 3
9: goto 1

10: ret 0

(c)

0: h := 2
1: if (h < 32) goto 7
2: M[h] := 0
3: h := h + 1
4: M[h] := 0
5: h := h + 2
6: goto 1
7: ret 0

(f)

Figure 5: Steps in optimising the example program

12

n : a := i+ c =⇒ a := j + k
if
←−
A (¬def(i) ∧ def(j) U ¬node(n) ∧ stmt(i := j + d)) @ n∧
conlit(c) ∧ conlit(d) ∧ varlit(j) ∧ varlit(i) ∧ k is c+ d

Figure 6: A variant case of constant propagation

access. Some standard, local transformations, such as constant folding and copy
propagation, are first applied to the code, as well as dead code elimination. The
resulting starting point for further global optimisations is shown in Fig. 5(a).

The computation spread over lines 3 and 4 of Fig. 5(a) can be simplified, as
the end result is to assign the value of temp2 + 2 to temp4. This form of alge-
braic simplification can be generalised to look for an addition between a variable
and a constant where the reaching definition of that variable is also an addition
between a variable and a constant. Standard libraries of transformations may
not capture this special case, but it can be easily written in TRANS, as shown
in Fig. 6. The assignment at node n is rewritten if the right-hand expression is
a sum of a variable and a constant and the only definition of that variable is a
sum between a constant and a variable. Applying this transformation repeat-
edly simplifies lines 3 and 8 and allows more dead code elimination, resulting in
the code shown in Fig. 5(b).

There are now several transformations that can be applied. In Section 4 we
present several applicable standard transformations such as loop strengthening,
lazy code motion, lazy strength reduction and common subexpression elimina-
tion defined in TRANS. Here, strength reduction replaces the calculations of i *
3 in lines 2 and 5 with pre-calculated values (stored in a new variable h). Further
applications of copy propagation, constant folding and dead code elimination
results in the code of Fig. 5(c).

At this point, the variable i is only used to indicate when to exit the loop.
However, this information is also contained in h, so the variable i could be
eliminated. The key to the transformation is identifying two induction variables
whose initialisation step have a fixed ratio r. The transformation shown in Fig. 7
changes the exit condition of the loop accordingly. Note that this specification
uses the macros defining loops and induction variables described in Section 7.
This transformation, along with more dead code elimination, results in the code
shown in Fig. 5(d).

One may observe that all the uses of h here are of a simple form i.e. in
additions to constants. Changing h so it always has some constant offset could
eliminate one of these additions. As the desired transformation is quite com-
plex, we introduce strategies, described formally in Section 6.6, which ease the
development of complex transformations. The transformation that implements
a general case of replacing one constant by another in these situations is shown
in Fig. 8. Applying this transformation (and more dead code elimination) results

13

b : (v < k1) =⇒ w < k2

if
loop(p, h, b, t) ∧ basic induction var(v, c1,) ∧ basic induction var(w, c2,)∧
←−
A (¬def(v) U stmt(v := i1)) @ h ∧

←−
A (¬def(w) U stmt(w := i2)) @ h ∧

A(¬use(v) ∨ node(b) U def(v) ∨ exit) @ t ∧ i2 is r ∗ i1 ∧ c2 is r ∗ c1 ∧ k2 is r ∗ k1

Figure 7: Transformation to apply strength reduction

let simple use(v) , ∃c.∃x.(stmt(x := v + c) ∧ conlit(c))

MATCH

loop(p, h, b, t) ∧ induction var(v, c, u) ∧
←−
A (¬def(v) U node(n) ∧ stmt(v := i)) @ h ∧
A(¬use(v) ∨ simple use(v) U out loop) @ h ∧
A(¬use(v) U def(v) ∨ exit) @ t

IN

replace n with v := i+ k if true
THEN

APPLY ALL

m : (x := v + t1) =⇒ x := v + t2
if
t2 is t1 − k ∧ ¬node(u) @ m

Figure 8: A transformation to alter an induction variable by a constant

in the code of Fig. 5(e).
A final optimisation would be to eliminate the temp8 variable and use h

instead. There are many ways to generalise this step. One simple way is to
split it into two transformations. The first replaces the use of temp8 with h and
alters h directly beforehand and afterwards. This first step can be specified in
TRANS as shown in Fig. 9. Applying this optimisation followed by algebraic
simplification and dead code elimination produces the optimised program shown
in Fig. 5(f).

We have demonstrated how TRANS can be used to systematically improve
a program, with a series of transformations which could have been conceived by
a compiler developer to implement particular, subtle optimisations. The fact
that these are written in a formal language which supports proof of soundness,
however, differentiates this practise from directly implementing ad-hoc optimi-
sations.

We now explain the semantics of TRANS and show the specification of a wide
range of transformations, including ones developed for loop optimisations.

14

m : (x := v + c) =⇒ v := v + c,
n : (y := M [x]) =⇒ y := M [v]; v := v − c

if
←−
A (¬def(x) U node(m)) @ m ∧A(¬use(v) U node(n)) @ m∧
A(¬use(x) ∨ node(n) U exit ∨ def(x)) @ m∧
A(¬use(v) U ∃k.stmt(v := v + k) ∧ conlit(k)) @ n

Figure 9: A transformation to replace an unnecessary induction variable

6 Semantics

In this section we describe the semantics of TRANS. First the semantics of the
side conditions will be described, then the semantics of the actions and finally
the semantics of a complete transformation.

6.1 Semantic objects and valuations

Transformations are based on the interpretation of free variables which refer to
objects in the program. There are several different sets of objects relating to a
program.

Definition 6.1 The semantics TRANS refers to the objects which are manipu-
lated in programs in L0, the main ones being:

Instr The set of possible instructions
Expr The set of possible expressions
Var The set of program variables
Num The set of numbers used in the program
Op The set of operators on elements of Expr
SynFunc The set of syntactic functions

Note that Var ⊆ Expr and Num ⊆ Expr. We use the symbol ⊕ to denote
members of Op. Members of SynFunc are functions of type Expr→ Expr which
denote simple syntactic substitution, for example λx.x + y where y and + are
elements of L0. A restriction that the bound variable only occurs once in the
body of the function is made, to ensure each function picks out only one part
of a syntax tree.

Definition 6.2 The set O of objects of the program is defined as

O = Nodes(G) ∪ Edges(G) ∪ Instr ∪ Expr ∪Op ∪ SynFunc .

Transformations are defined through the use of free variables. We use MetaVar
as the type of metavariables, and we use a, b,. . . as metavariables. The type

15

MetaVar can bind to values within the set O, defined in 6.2. The type MetaVar
is specifically used in the translation of side conditions into Binary Decision
Diagrams described in Section 10.

The semantics of TRANS is given in terms of a valuation function for objects
of L0.

Definition 6.3 A valuation is a mapping from MetaVar to O.

Let Valuation be the type of all valuations. A valuation can convert a Pattern
(i.e. the expr-pattern non-terminal of TRANS in Fig. 4) into a semantic object.
This is, in effect, “substituting” into a pattern containing free variables.

Definition 6.4 The partial function subst : Valuation×Pattern 9 O is defined
by

subst(σ, x) = σ(x) if σ(x) ∈ Expr
subst(σ, x o y) = subst(σ, x) σ(o) subst(σ, y) if σ(o) ∈ Op
subst(σ, e[d]) = σ(e)(subst(σ, d)) if σ(e) ∈ SynFunc

6.2 Side conditions

The basis of the side conditions in TRANS are first order CTL formulae. We
define the type NodeCondition that intuitively corresponds to these connec-
tives, and formally to the language defined by the node-condition non-terminal
of TRANS. These are connected together using first order logic connectives.
The truth of these formulae depend on a valuation, a node in the CFG and the
CFG itself. Accordingly, we introduce a semantic function d.e which maps a
NodeCondition to its meaning:

d.e : NodeCondition→ ((V aluation×Node× FlowGraph)→ Bool)

The definition of d.e follows the semantics of CTL. For convenience we define
←−
G which is identical to the graph G but with direction on every edge inverted.

16

Definition 6.5 The semantic function for node conditions is defined by

dφ ∨ ψe(σ, n,G) = dφe(σ, n,G) or dψe(σ, n,G)
dφ ∧ ψe(σ, n,G) = dφe(σ, n,G) and dψe(σ, n,G)
d¬φe(σ, n,G) = it is not the case that dφe(σ, n,G)
d∃x.φe(σ, n,G) = ∃v : v ∈ O : dφe(σ[x 7→ v], n,G)
dnode(m)e(σ, n,G) = σ(m) = n
dstmt(p)e(σ, n,G) = I(n) ∼=σ p
dEX[l](φ)e(σ, n,G) = ∃m,n : (n,m, l) ∈ Edges(G) : dφe(σ,m,G)
dAX[l](φ)e(σ, n,G) = ∀m,n : (n,m, l) ∈ Edges(G) : dφe(σ,m,G)
dE(φ U ψ)e(σ, n,G) = ∃p : p ∈ CPaths(n,G) : Until(p, φ, ψ)
dA(φ U ψ)e(σ, n,G) = ∀p : p ∈ CPaths(n,G) : Until(p, φ, ψ)
d
←−−
EX [l](φ)e(σ, n,G) = ∃m,n : (m,n, l) ∈ Edges(G) : dφe(σ,m,

←−
G)

d
←−−
AX [l](φ)e(σ, n,G) = ∀m,n : (m,n, l) ∈ Edges(G) : dφe(σ,m,

←−
G)

d
←−
E (φ U ψ)e(σ, n,G) = ∃p : p ∈ CPaths(n,

←−
G) : Until(p, φ, ψ)

d
←−
A (φ U ψ)e(σ, n,G) = ∀p : p ∈ CPaths(n,

←−
G) : Until(p, φ, ψ)

The definition of the next operators (EX, AX etc.) includes the optional
parameter [l], which indicates whether an edge in the graph is a branch or seq
edge. If the statement holds true regardless of which type of branch is used, the
parameter may be omitted.

We define Until in the following manner.

Definition 6.6 Consider a path p ∈ CPaths(n,G), for some n, such that
p = n0n1 . . . nk. The predicate Until(p, φ, ψ) holds if:

∃j : 0 ≤ j ≤ k : dψe(σ, nj ,G) ∧ ∀0 ≤ i < j. dφe(σ, ni,G)

In order to capture pattern matching, the specification of the side condition
semantics makes use of the relation ∼=σ which is a subset of Instr × Pattern
and defined by:

I ∼=σ x := e = I = σ(x) := subst(σ, e)
I ∼=σ if (e) = ∃n.I = if subst(σ, e) goto n
I ∼=σ skip = I = skip or ∃n.I = goto n
I ∼=σ ret(e) = I = ret(subst(σ, e))

The temporal logic formulae can be combined using logical connectives and
the @ operator, creating side conditions of the type Condition that do not
depend on a particular node in the CFG. We define the semantics of these
conditions by overloading the semantic function d.e:

d.e : Condition→ (V aluation× FlowGraph→ Bool) .

The definition of this function is straightforward:

Definition 6.7 The semantic function for side conditions is defined by

17

dφ ∨ ψe(σ,G) = dφe(σ,G) or dψe(σ,G)
dφ ∧ ψe(σ,G) = dφe(σ,G) and dψe(σ,G)
d¬φe(σ,G) = it is not the case that dψe(σ,G)
d∃x.φe(σ,G) = ∃τ : τ ∈ O : dφe(σ[x 7→ τ],G)
dφ @ m e(σ,G) = dφe(σ, σ(m),G)
dp(x)e(σ,G) = p̂(σ(x), σ)

Here, the logical combination of node conditions is standard. The last clause
above refers to global predicates, described next.

6.3 Basic Predicates

The TRANS language allows a wide range of predicates to be defined, some of
which are fundamental predicates, and some of which are simply commonly used
macros. We make the distinction between those predicates that are global, and
those that are parameterised by node.

6.3.1 Global predicates

Global conditions (such as conlit(c), which states that c is a literal constant)
are defined by a family of global predicates (each in a type GlobalPredn where
n is the arity of the predicate). The semantics of these expressions varies from
predicate to predicate and is stipulated by a family of functions .̂, such that for
each arity n there is a function:

.̂ : GlobalPredn → (On ×Valuation)→ Bool) .

In the example transformations described in this chapter, the following basic
global predicates on L0 are used:

conlit(x) x is a constant literal
varlit(x) x is a variable literal
freevar(x, e) x is a free variable of the expression e
is(x, e) the expression e can be statically determined and eval-

uates to x

Usually, we write “x is e” instead of is(x, e), in the style of Prolog. The formal
definition of the above predicates is as follows

ĉonlit(x)σ = σ(x) ∈ Num
v̂arlit(x)σ = σ(x) ∈ Var
̂freevar(v, e)σ = σ(v) ∈ FV (subst(σ, e))
îs(x, e)σ = σ(x) = evalC(σ, subst(σ, e))

The predicates return false if the function subst or evalC is undefined when
called. The definition of the is(x, e) predicate uses the following auxiliary func-
tion:

18

evalC(σ, x) = σ(x) if σ(x) ∈ Num
evalC(σ, x⊕ y) = evalC(σ, x) [[σ(⊕)]] evalC(σ, y) if σ(⊕) ∈ Op

Within this definition [[op]] is the application of op to the surrounding argu-
ments. It is also useful to have one global predicate fresh, which succeeds when
its argument is bound to the next new variable i.e. a variable that has not been
mentioned in the program previously.

6.3.2 Local predicates

Local predicates describe conditions at particular nodes during execution. The
following local predicates are useful for the transformations presented in this
paper:

def(x) @ n the statement at node n assigns to variable x
use(x) @ n the statement at node n is an assignment, whose expres-

sion contains the sub-expression x
trans(e) @ n the statement at node n does not assign to any of the

free variables in the expression e

These predicates are defined in TRANS as macros.

let def(x) , ∃e. stmt(x := e)
let use(x) , ∃v, e. stmt(v := e[x]) ∨ stmt(if (e[x])) ∨ stmt(ret(e[x]))
let trans(e) , ¬∃v, d. stmt(v := d) ∧ freevar(v, e)

6.4 Actions

Side conditions stipulate which valuations allow the transformation to apply to
a program (namely the valuations σ such that dφe(σ,G) holds). Given such a
valuation, an action specifies how to alter the program. An action is defined as
a function on flow graphs—a partial function, since it could still fail due to a
type mismatch. Accordingly, the semantics of different actions have type:

d.e : Action→ (Valuation× FlowGraph 9 FlowGraph)

There are four types of actions in TRANS; combinations of these actions allow
nodes to be added or deleted at any position in the graph.

The add edge action adds an edge of a particular type between two nodes.
If an edge of the correct type already exists between the two nodes then the
action has no effect.

Definition 6.8 The action add edge(n,m, e) is defined as:

dadd edge(n,m, e)e(σ, 〈N,E, I〉) = 〈N,E ∪ {(σ(n), σ(m), σ(e))}, I〉

The remove edge action removes an edge between two nodes. If no such edge
exists then the action has no effect.

19

@@R ��	
n

? ⇒
@@R ��	

i1

?
ik

?

(a)

@@R

n
��	

m

? ⇒ @@R

n

?q

��	
m

?

(b)

Figure 10: The replace and split edge actions

Definition 6.9 The action remove edge(n,m, e) is defined as:

dremove edge(n,m, e)e(σ, 〈N,E, I〉) = 〈N,E \ {(σ(n), σ(m), σ(e))}, I〉

The replace action replaces a node with a sequence of nodes. This is illus-
trated in Fig. 10(a). The action changes all three components of the graph.
It adds the nodes necessary to create the new sequence of instructions, to be
connected by a series of seq edges. The successor edges of the node being re-
placed are moved to the end of the block and the labelling function of the graph
is altered to map the correct values of the instructions on the nodes in the
replacement block.

Definition 6.10 The action replace n with i1; . . . ; ik is defined as:

dreplace n with i1; . . . ; ike(σ, 〈N,E, I〉) =
〈N ∪ {n2, . . . , nk}, E′, I B [n1 7→ subst(σ, i1), ..., nk 7→ subst(σ, ik)]〉

where n1 = σ(n) and n2, . . . , nk are nodes not occurring in the original graph
and B alters the labelling function I with new bindings. The edge relation E′ is
defined as:

E′ = {remap succ(n1, nk, e) | e ∈ E} ∪ {(σ(ni), σ(ni+1), seq) | 1 < i < k}

and

remap succ(x, y, e) =

{
(m, s, t) if x = n, y = m, e = (n, s, t)
e otherwise

The split edge action alters a graph by inserting a node between two existing
nodes joined by a particular edge. This action is useful because it specifies which
particular edge is used as placement for a node, in the case where its successor
node has several predecessors. This is illustrated in Fig. 10(b), which uses the
same labelling function. In this definition n and m both represent nodes in the
graph, whilst e is the edge between them that the transformation splits, and i
is the new instruction to be inserted in the split graph.

Definition 6.11 The action split edge(n,m, e, i) is defined as:

20

dsplit edge(n,m, e, i)e(σ, 〈N,E, I〉) =
〈N ∪ {q},
(E \ {(σ(n), σ(m), σ(e))}) ∪ {(σ(n), q, σ(e)), (q, σ(m), σ(e))},
I B [q 7→ subst(σ, i)]〉

where q is a new node not occurring in the original CFG and B overwrites a
map with a new entry.

It is possible to compose several actions in sequence. For example the action

replace n with x := 4,
split edge(n,m, e, y := x)

will first perform the node replacement and then perform the edge split. It is
straightforward to define how these actions are performed in sequence:

dA1, A2, . . . , Ake(σ,G) = dA2, . . . , Ake(σ, dA1e(σ,G))
de(σ,G) = G

This completes the definition of the semantics of the action component of trans-
formations. This formalisation, along with the semantics of the side conditions
in the previous section, allows one to define the meaning of a complete trans-
formation.

6.5 Transformations

This section presents the semantics of a transformation, drawing on the previ-
ously defined semantic functions. The overall form of a transformation is:

A1, A2, . . . , An

if
φ

where each Ai is some action and φ is the side condition. The transformation
attempts to compute a valuation σ such that dφe(σ,G) is true. It then uses this
valuation to perform the actions A1 to An in left to right order.

Since a side condition can be true under many different valuations, the mean-
ing of a transformation is given by a set of functions that transform graphs. The
meaning of a transformation depends on a partial valuation. A partial valuation
is a partial function from metavariables to objects. The semantic function d.e
for transformations will be of type:

d.e : Transformation
→ (PartValuation× FlowGraph→ P(FlowGraph → FlowGraph))

We then define a transformation in TRANS to be the set of transformations
we get courtesy of valuations that are compatible with the given partial valuation
and make the side condition true.

21

Definition 6.12 The semantic function on transformations is defined as:

dA1, . . . , Ak if φe(τ,G) =
{λx.dA1, . . . , Ake(σ, x) | dφe(σ,G) holds and σ � dom(τ) = τ}

where f � D denotes the function f restricted to the domain D.

This definition of the semantics as a set of functions between CFGs makes
explicit the non-determinism that stems from the fact that many different sub-
stitutions may satisfy the applicability condition of the transformation. This
can be seen to correspond to the fact that the transformation may apply to
many different parts of the CFG. The intended application for these transfor-
mations resolves the non-determinism by choosing one correct valuation, i.e.
one local place to transform.

6.6 Strategies

In order to succinctly specify more complex transformations, we introduce strate-
gies, which are operators that act upon transformations. In this section we
describe four strategies which will be used to define optimisations in Section 9.

6.6.1 Matching Free Variables

The MATCH . . . IN strategy executes a transformation restricted to a valuation
that satisfies a particular formula. This strategy is particularly useful in com-
bination with other strategies, as in such cases the desired valuations cannot be
simply added to the side condition. For example, the transformation

MATCH stmt(x := e) @ n IN T

specifies that the transformation T should be used only when a substitution
that makes the formula stmt(x := e) @ n true is found. Only the variables n, x
and e are restricted; any other free variables in T are unaffected. Often T is a
complex transformation made of strategies.

The MATCH . . . IN strategy is defined in terms of the semantic function for
transformations.

Definition 6.13 The MATCH . . . IN strategy is defined by the following exten-
sion to the semantic function on transformations:

dMATCH φ IN T e(τ,G) =
{f | dφe(σ,G) holds, σ � dom(τ) = τ, f ∈ dT e(τ ∪ (σ � FV (φ)),G)}

where FV (φ) is the set of free variables occurring in the formula φ.

22

6.6.2 Global Transformation

With Definition 6.12 of the semantics of transformations as a set of functions
between CFGs, the natural solution is to choose one particular instance to
solve the non-determinism. An alternative which is required for some program
transformations is a global transformation that applies in every place, i.e. for
every valuation that satisfies the side condition. This is achieved with the
APPLY ALL strategy.

Definition 6.14 The APPLY ALL strategy is defined by:

dAPPLY ALL(T)e(τ,G) = {f1 ◦ f2 ◦ . . . ◦ fn | fi ∈ dT e(τ,G) \ {f1 . . . fi−1}}

where n is the (finite) number of elements of dT e(τ,G).

In other words, the APPLY ALL strategy applies all of the possible transfor-
mations in any order.

6.6.3 Nondeterminism

In certain cases it is useful to extend the nondeterminism of transformations
when combining them. The operator � on transformations corresponds to a
nondeterministic choice which is made available for when valuations are matched.

Definition 6.15 The � operator on transformations is defined by the following
extension to the semantic function on transformations:

dT1 �T2e(τ,G) = dt1e(τ,G) ∪ dt2e(τ,G)

6.6.4 Composition

Sequential composition involves performing one transformation directly after
another. The composed transformation will only succeed if both component
transformations succeed. Composition is done with the T1 THEN T2 strategy.

Definition 6.16 The THEN strategy is defined by:

dT1 THEN T2e(τ,G) = {f ◦ g | f ∈ dT1e(τ,G), g ∈ dT2e(τ,G)}

This strategy makes most sense intuitively if both T1 and T2 are deterministic
i.e. both dT1e and dT2e contain only one element.

Four strategies have now been defined and although they are simple they
allow transformations to be combined in a very flexible manner. Section 8
describes simpler transformations, whilst Section 9 presents more sophisticated
transformations that include strategies. But before introducing these examples,
we examine how loops can be recognised within our methodology.

23

Figure 11: General pattern for a loop

7 Identifying loops via dominators

Since our system operates over the control flow graph of the program, it does not
naturally have information about the existence and positioning of loop struc-
tures. In this section, we show how loops can be recovered from unstructured
graphs, and we define the macro loop which is used extensively in our specifica-
tion of loop optimisations in Section 9.

The key concept is that of dominance. A node n is said to dominate a node
m if every path from the start of the program to node m must pass through
node n. This can be expressed as a temporal logic formula, by stating that at
the start node there does not exist a path that satisfies ¬node(n) until the path
reaches m.

let dom(n,m) , ¬E(¬node(n) U node(m)) @ start

Conversely, we can define post dominance, when every backward path from the
exit node to m must pass through n.

let pdom(n,m) , ¬
←−
E (¬node(n) U node(m)) @ exit

For the purpose of this paper, the general pattern for a reducible loop is
depicted in Fig. 11. It is generally the case that optimising compilers do not
deal with irreducible loops, and we consequently do not account for this case
[Tar73]. Some loops test their condition after their loop bodies, for example
do-while loops within the Java programming language, we do not account for
this case since it can be easily converted into the form we look for by copying
the loop body to a sequence of nodes ahead of the loop header.

Loops are characterised by certain key nodes: the pre-header (phead), the
head, the tail and the break nodes. We specify the order of the key nodes in
the loop with dominance relations. The pre-header must dominate the head
(dom(phead, head) must hold) and the break node must post-dominate the tail
(pdom(break, tail) must hold). In addition, the pre-header node must be the
immediate predecessor of the head node:

AX(node(head)) @ phead

24

A loop is identified by the existence of a back − edge between head and tail.
The back edge relation can be specified as an edge between two nodes whose
source can reach its target in a backwards direction:

let back-edge(tail, head) , (EXnode(head)) ∧ (
←−
EFnode(head)) @ tail

It is worth noting that the back-edge predicate may hold true at positions
other than those within the context of loop analysis (since we allow unrestricted
goto with L0). This is acceptable for our purposes, since the loop-related trans-
formations refer to the loop definition, defined later in this section, which specif-
ically binds the back-edge definition to the loop tail and head nodes. We can
now define the relation between the four key nodes that define a loop

let loop(phead, head, break, tail) ,
dom(phead, head) ∧ pdom(break, tail) ∧
AX(node(head)) @ phead ∧
back-edge(tail, head)

Some optimisations such as our version of strength reduction apply only to
well-structured loops, whose only entry is the head node and only exit is the
break node. To identify such loops, nodes inside the loop and outside the loop
are distinguished. Execution of nodes inside the loop lead eventually to the
break node before either re-entering the loop or exiting the program. So all
paths from nodes outside the loop reach either the exit or pre-header without
going through the break

let out loop , A(¬node(break) U node(phead) ∨ exit)

An illegal jump out of the loop requires the existence of a node that is not the
break node but has a successor outside the loop.

let out jump , ¬node(break) ∧ EX(out loop)

An illegal jump into the loop can be defined in a similar manner.

let in jump , ¬node(head) ∧
←−
EX(out loop)

These predicates allow us to define well-structured loops:

let wsloop(phead, head, break, tail) ,
loop(phead, head, break, tail) ∧
A(¬out jump U out loop) @ head ∧
A(¬in jump U out loop) @ head

This definition of loops is used within the strength reduction and loop fusion
transformations described in the following two sections. Intuitively, it captures
loops that have some block of sequential instructions up to a tail node, from
which an edge goes back to the loop header. Somewhere within this loop there
is a node that has a branch that allows one to break out of the loop, called
the break node. A pre-head node is also matched, to support the hoisting of
instructions to the place immediately preceding the loop.

25

n : (x := e) =⇒ skip
if
¬EX(E(¬def(x) U use(x) ∧ ¬node(n))) @ n

Figure 12: Specification of dead code elimination

8 Example transformations

This section provides examples of common optimising transformations that can
be specified in TRANS, and which are amongst transformations that are found
in the optimising phase of many compilers. However, the presentation here
may differ from standard presentations in the sense that each transformation
may be only a part of a more complex optimisation; the improvement in code
will occur when it is combined with other transformations, such as dead code
elimination. Specifying the transformations in this modular way supports ex-
perimenting with application of transformations in different orders to increase
efficiency. The TRANS language also makes the transformation more amenable
to formal analysis, for example proving that the transformation is semantics
preserving.

8.1 Dead code elimination

Dead code elimination removes a definition of a variable if it is not used in the
future. The rewrite simply removes the definition:

n : (x := e) =⇒ skip

The side condition on this transformation is that all future paths of computation
should not use this definition of x or, more precisely, there does not exist a path
with a node that uses x without a different instruction re-assigning to x first.
This can be specified using the E(. . . U . . .) construct, noting that x could be
used at node n itself. So the paths that should be identified are those not using
x until the formula use(x)∧¬node(n) holds. The final specification of dead code
elimination is shown in Fig. 12.

8.2 Constant propagation

Constant propagation is a transformation where the use of a variable is replaced
with the use of a constant known before the program is run (i.e. at compile
time). The standard method of finding out if the use of a variable is equivalent
to the use of a constant is to find all the possible statements where the variable
could have been defined, and check that in all of these statements, the variable
is assigned the same constant value. The rewrite itself is simple:

n : (x := e[v]) =⇒ x := e[c]

26

n : (x := e[v]) =⇒ x := e[c]
if
←−
A (¬def(v) U stmt(v := c)) @ n ∧ conlit(c)

Figure 13: Specification of constant propagation

This rewrite uses the term e[v] to find an expression e with sub-expression v.
Note that, as per Definition 6.1, a variable v matches against one occurrence of
the sub-expression in e. The rewrite then replaces the occurrence that has been
matched. So if e matches the expression x + (x− 2), with v matching the left
hand x and c matching 3, then the rewrite inserts the expression 3 + (x− 2).

For the rewrite to be correct, v and c must be restricted so that v necessarily
equals c at the given point. The idea is that if all backward paths from node n
are followed, then the first definition of v encountered must be of the form v := c.
As all such paths must be checked, the

←−
A (..U..) constructor is appropriate. To fit

into the “until” path structure we can observe that requiring the first definition
on a path to fulfil a property is equivalent to requiring that the path satisfies
non-definition until a point where it is at a definition and the property holds.
The full specification of constant propagation is given in Fig. 13.

This transformation is equivalent to standard constant propagation as found
in existing compilers. Sometimes it is useful to propagate other entities such as
variables; the transformation specifications in these cases are almost identical.

There are several extensions to constant propagation that are quite spe-
cialised and require complex algebraic reasoning; a survey of their computa-
tional complexity can be found in [MOR01]. Conditional constant propagation
is presented in [WZ91]. These extensions expose a current limitation of TRANS:
it does not allow recursive pattern matching facilities, therefore expressions of
arbitrary complexity cannot be folded. It only takes account of expressions of
the form of constant op constant. Further extensions to TRANS could be used
to capture these special cases.

8.3 Strength reduction

Strength reduction is a transformation that replaces multiplications within a
loop structure with additions that compute the same value. This is beneficial
since the computational cost of multiplication is usually greater than that of
addition.

For strength reduction to apply, a basic induction variable and a derived
induction variable dependent on it within the loop must be identified. Within a
loop, a basic induction variable is one that has only one assignment of the form
v := v+ c. A derived induction variable of the loop is a variable that is linearly
dependent on a basic induction variable v. The optimisation is illustrated in
Fig. 14. We use n to denote the node at which the induction variable increments,
and m to denote the node at which the derived induction variable is assigned

27

i := 0

?
if i = n

?

-branch

i := 1 + 1 n
?

j := i ∗ 3 m

6

goto -

⇒

i := 0

?
l := i ∗ 3 + 0

?
if i = n

?

-branch

i := 1 + 1

?
l := l + 3

?
j := l

6

goto -

Figure 14: Strength reduction

to within the loop.
The following relation states that v is an induction variable that is incre-

mented at program point m with increment c:

let basic induction var(v, c,m) ,
¬out loop ∧ (stmt(v := v + c) @ m∧

A(node(m) ∨ ¬def(v) U out loop)) @ head

A linearly derived induction variable is one that has only one assignment in the
loop assigning it to a linear function of the variable it depends on. This can be
detected using the predicate dependent var:

let linear def(w, v, k, d) , (stmt(w := v ∗ k) ∧ d is 0) ∨ stmt(w := v ∗ k + d)

let dependent var(w, v, k, d) ,
¬out loop (∧linear def(w, v, k, d) @ n ∧

A(node(n) ∨ ¬def(w) U out loop)) @ head

Finally, the dependent variable w is initialised before the start of the loop in the
transformed program. In the first iteration of the loop the value of w between
the head of the loop and its first definition will be different in the transformed
program compared to the original program. To ensure the value difference does
not matter the following invariant must be preserved:

A(¬use(w) U def(w) ∨ exit) @ head

In other words, either the variable w cannot be used between the head of the
loop and its first definition within the loop or control flow leaves the loop if the
variable w is not live.

When these conditions are satisfied, the strength reduction transformation
introduces a fresh variable w′ and replaces the assignment w := v ∗ k with
w := w′. In order to maintain the correct value of w′, it is necessary to add the
assignment w := w+ step, where step is matched to the value of c ∗ k (using the
is predicate) after execution of the assignment v := v+c. In addition w must be
initialised to the correct value just after the pre-header of the loop. The overall
transformation is specified as in Fig. 15 .

28

phead : s =⇒ s;w′ := v ∗ k + d,
n : (w := v ∗ k) =⇒ w := w′,
m : (v := v + c) =⇒ v := v + c;w′ := w′ + step

if
loop(phead, head, break, tail) ∧
basic induction var(v, c,m) ∧ dependent var(w, v, k, d) ∧
A(¬use(w) U def(w) ∨ exit) @ head ∧
conlit(k) ∧ conlit(c) ∧ step is k ∗ c ∧ fresh(w′)

Figure 15: Specification of strength reduction

Variations

The above transformation introduces a new variable and on its own only adds
new calculations and does not make code any faster. This is a case where clean-
ing up transformations are needed. In particular, repeatedly applying variable
propagation and dead code elimination removes the calculations involving the
original dependent variable w.

Some loop strengthening algorithms (including the one in [ALSU07]) find
more types of dependent variables. Specifically, dependent variables may exist
that are a linear function of an induction variable but their definition is in terms
of other dependent variables. Detecting this kind of dependent variable is appro-
priate when all loop strengthening is done in one monolithic transformation. In
our framework, where small transformations are iterated, the complex approach
is not necessary since repeated strengthening along with variable propagation
and algebraic simplification will eventually strengthen variables such as w above.

A more complex version, combining strength reduction with code motion
[KRS] needs the addition of TRANS strategies and is described in Section 9.3.
There are even more sophisticated induction and dependent variable detection
techniques that are beyond the scope of both this paper and the TRANS lan-
guage. For example see [vE01] where some advanced algebraic reasoning is
required.

8.4 Branch elimination

A jump statement such as depicted in Fig. 16(a) where two branches of a con-
ditional lead to the same node can be rewritten to a skip ; the two conditional
edges are replaced by a sequential edge. The specification of this transformation
is given in Fig. 17(a).

Branch elimination can also disconnect an unused branch of a conditional, as
shown in Fig. 16(b). A pattern like this might occur after other transformations.
The optimisation is based upon two transformations: one for recognising ‘always
true’ conditions and one for recognising ‘always false’ conditions. The ‘always-
true’ case is specified in Fig. 17(b).

29

if (e)

?
�
⇒ skip

?

(a)

if (True)

? ?

branch

⇒ skip

?

branch

(b)

Figure 16: Two cases of branch elimination

n : (if (e)) =⇒ skip,
remove generic(n, s),
add edge(n, s, seq)

if
AX(node(s)) @ n

(a)

n : (if (True)) =⇒ skip,
remove generic(n, t),
remove generic(n, f),
add edge(n, t, seq)

if
EXbranch(node(t)) @ n ∧ EXseq(node(f)) @ n

(b)

Figure 17: Specification of two variants of branch elimination

9 Example transformations using strategies

Strategies provide a way of exploiting the non-determinism of matching within
the side conditions of transformations. Here we describe transformations that
use strategies to alter the control flow of a program.

9.1 Skip elimination

Some transformations, such as dead code elimination, may leave skip in-
structions in the program being optimised. As illustrated in Fig. 18, these are
unnecessary and can be removed.

A skip statement may have several predecessors but has only one successor.
To remove the skip statement, it is necessary to remove all edges connected
to it and add an edge between each predecessor to the successor. The strategy
language is very suitable for such manipulations: a MATCH strategy locates
a skip instruction and its unique successor, and the APPLY ALL strategy
performs the edge removal. The resulting specification of skip elimination is

-
?

skip

?
s

⇒ -
?
s

Figure 18: Skip elimination

30

let remove generic(n,m) , remove edge(n,m, seq); remove edge(n,m, branch) .

MATCH

stmt(skip) ∧AX(node(s)) @ n
IN

APPLY ALL

remove edge(p, n, e)
add edge(p, s, e)

if
←−−
EXe(node(p)) @ n

THEN

remove generic(n, s)

Figure 19: Specification of skip elimination
p1

?
if (e)

h1

?seq ?

?t1

-

p2

?
if (e)

h2

?seq

??t2

-

?
if (e)

?seq

?

?
skip

- skip

?
if (True)

?seq

??

-
⇒

Figure 20: Loop Fusion

shown in Fig. 19. It uses an action remove generic which removes possibly
existing edges between two nodes independently of their type (i.e. branch,
seq). Recall that an APPLY ALL strategy executes the transformation for every
matching substitution of free variables (given that n and s are bound in the
MATCH strategy).

9.2 Loop fusion

Loop fusion, as illustrated in Fig. 20, is a control flow transformation which
fuses two consecutive indexed loops into one. This often makes the code more
time-efficient since it reduces the number of increment instructions to i and
allows more opportunity for instruction scheduling1.

1However, this transformation may not produce faster code, especially as it can introduce
worse cache behaviour.

31

The specification of fusion must identify two loops. To make the transfor-
mation simpler, the specification shown here is restricted to loops that follow
a for-like pattern, i.e. where the break node is the same as the header node
and whose tail node increments the induction variable of the loop. The macro
for identifying loops introduced in Section 8.3 is used twice here to verify that
loop(p1, h1, h1, t1) and loop(p2, h2, h2, t2). These definitions specify the header
and break nodes as the same node (since they are bound to the same meta-
variable). Loops can be identified as consecutive by checking that all the second
loop’s pre-header’s immediate predecessors are the break node of the first loop,
i.e. ←−−

AX(node(h1)) @ p2

The node cont that follows the break in the second loop (i.e. where control
leaves the loop) is detected with the following predicate:

EX(node(cont) ∧ out loop2) @ h2

The loops must be indexed in the same manner. Firstly, both the pre-header
nodes (initialising the induction variable) and the break nodes must have the
same instruction:

same instr(p1, p2) ∧ same instr(h1, h2)

where same instr is defined by:

let same instr(n,m) , ∃s.stmt(s) @ n ∧ stmt(s) @ m .

Furthermore, both loops must have a common induction variable x (in the
following formula basic induction vari is defined as in Section 8.3 for either the
first or second loop):

basic induction var1(x, c, t1) ∧ basic induction var2(x, c, t2)

Since the transformation is being applied to for-pattern loops, the specification
stipulates that the basic induction variable is incremented at the tails of the
loops. Finally, both exit conditions of the loops must leave the loop by a seq
edge:

EXseq(out loop1) @ h1 ∧ EXseq(out loop2) @ h2

It is also necessary for initialisation, increment and exit values (i, c, and k
respectively) to be unchanged between the two loops. In the transformation
presented below they are restricted to be constant literals. For the loops to be
successfully fused, we need to ensure that the statements in the second loop do
not depend on the first loop. To this end, the predicate ind expr holds of an
expression whose components are not defined within the first loop:

let ind expr(e) , ¬
←−
E (trans(e) U ¬trans(e) ∧ ¬out loop1)

The predicate independent holds for nodes that do not depend on the first loop
using the definition ind expr(e).

32

h2 : (if (x⊕ k)) =⇒ if (True),
p2 : x := i =⇒ skip,
t1 : (x := x+ c) =⇒ skip,
move edge(t2, h2, h1),
move edge(h1, p2, cont),
move edge(t1, h1, h2),

if
loop(p1, h1, h1, t1) ∧ loop(p2, h2, h2, t2) ∧←−−
AX(node(h1)) @ p2 ∧
EX(node(cont) ∧ out loop2) @ h2 ∧
same instr(p1, p2) ∧ same instr(h1, h2) ∧
basic induction var1(x, c, t1) ∧ basic induction var2(x, c, t2) ∧
EXseq(out loop1) @ h1 ∧ EXseq(out loop2) @ h2 ∧
A(independent U out loop2) @ h2 ∧
conlit(i) ∧ conlit(n) ∧ conlit(c)

Figure 21: Specification of loop fusion

let independent ,
skip ∨ ∃e. ind expr(e) ∧ (stmt(if (e)) ∨ stmt(:= e) ∨ stmt(ret(e)))

This expression can then be used to state that all the statements in the second
loop are independent:

A(independent U out loop2) @ h2

If these conditions are satisfied, the transformation will fuse the loops by con-
necting the tail of the first loop to the head of the second loop, the tail of the
second loop to the head of the first loop and the break of the first loop to the
cont node. The macro move edge is used to perform these connections as defined
by:

let move edge(a, b, c) , remove edge(a, b, seq), add edge(a, c, seq)

The increment of the induction variable from the first loop and the initialisation
and break from the second loop must be removed. However, it is simpler to
replace the break in the second loop with the constant condition if (True) and
let branch elimination remove the edges later.

The complete specification of loop fusion is shown in Fig. 21. Note that this
version implements a restricted version of fusion, as the definition of independent
does not capture all independent uses within the second loop.

9.3 Partial redundancy elimination

Partial redundancy elimination transforms cases like the one shown in Fig. 22.
The calculation of the expression a + b at node n will have already been com-
puted if one path is taken but not if the other path is taken. The transformation

33

if e

?
x := a + b

?

�
?

x := a + b ⇒

if e

?
x := a + b

?

?
x := a + b

�?
x := a + b

⇒

if e

?
x := a + b

?

?
x := a + b

�?
skip

Figure 22: Partial redundancy elimination

adds the calculation of the expression to the other path as well, making the cal-
culation at node n fully redundant. The idea is that after partial redundancy
elimination, common subexpression elimination can remove the calculation at
node n thus improving performance of the left branch of computation.

Expression e is said to be available at point p if there is some point on every
program path to p where the expression is calculated and if the same expression
were evaluated at p it would result in the same value. This is captured by
specifying that for every path backwards from that point p a calculation of the
expression is reached before any of the constituents of that expression is reached.
This concept of availability, as well as the notion of an expression being available
on some path, are captured by the definitions:

let avail(e) ,
←−
A (trans(e) U use(e))

let avail one(e) ,
←−
E (trans(e) U use(e))

These two notions can be combined to specify partial availability, defined as a
point where on some paths the expression is available but not on all paths—the
situation to be eliminated:

let partial avail(e) , avail one(e) ∧ ¬avail(e)

To eliminate the partial redundancy, calculations of an expression are placed at
the point where they become unavailable—a point that has predecessors where
the expression is available and predecessors where it is unavailable:

←−−
EX(avail(e)) ∧

←−−
EX(¬avail(e))

However, these calculations should be placed where they will not cause extra
calculations on other paths. Fig. 23 illustrates a case where a calculation should
not be moved, as there is a chance the result will never be used. A safe place to
add a computation of an expression to eliminate a redundancy at node n can
be identified by showing that all paths at that place must lead to node n, not
altering any of the constituents of e along the way. This extra property finalises

34

x := a + b

? ?
if e

? ?
x := a + b

6⇒
x := a + b

?

x := a + b

?
if e

? ?
skip

?

Figure 23: Inappropriate use of partial redundancy elimination

MATCH

(use(e) ∧ partial avail(e) ∧
←−
A (trans(e) U pp(n, e) ∨ avail(e))) @ n

fresh(h)
IN

APPLY ALL

split edge(p,m, z, (h := e))
if
pp(n, e) @ m ∧

←−−
EXz(node(p) ∧ ¬avail(e)) @ m

Figure 24: Specification for partial redundancy elimination

the definition of a possible placement (pp) of a computation of expression e to
eliminate a partial redundancy at node n:

let pp(n, e) , ¬avail(e) ∧
←−−
EX(avail(e)) ∧A(trans(e) U node(n))

Partial redundancies are eliminated at points where an expression is calculated,
that expression is partially available and every backward path either leads to
a point where the expression is available or could be made available with a
possible placement:

partial avail(e) ∧
←−
A (trans(e) U pp(n, e) ∨ avail(e)) @ n

If there is such a node, the transformation shown in Fig. 24 places the com-
putation of e between each possible placement and each of its predecessors for
which e is not available. This leads to conditions where common sub-expression
elimination and dead code elimination are applied to remove the calculation at
node n. Partial redundancy elimination optimisations generally perform what
is known as critical edge splitting [KRS92] which increases applicability of an
optimisation. We assume edge splitting has been performed before this trans-
formation is applied.

35

9.4 Lazy code motion

Lazy code motion is another form of partial redundancy elimination, with a
more global view of moving around the calculation of an expression. Rather
than just finding one partial redundancy to eliminate, it finds the “best” places
to calculate any expression calculated in the code. The transformation only
moves the expression as far away from the original computation as needed to
remove redundancies. This reduces any harm to the performance of register
allocation on the program. Our formulation of Lazy Code Motion very closely
follows that of Steffen and Knoop [KRS92].

The first property of interest to this transformation is down safety. A pro-
gram point is down-safe with respect to an expression e if all paths from that
point reach a calculation of e without redefining any of the constituents of e.

let d safe(e) , A(trans(e) U use(e))

Computations can be placed at down-safe points. The earliest computation
point at which e must be computed is one at which there exists a path back-
wards that has no down-safe points until it reaches a point where one of the
constituents of e is redefined, if it exists:

let earliest(e) ,
←−
E (¬d safe(e) U (¬trans(e) ∨ start))

The points that are both down-safe and earliest provide sufficient criteria for
where to place calculations of e to eliminate partial redundancy, but ideally
the computation should be placed as close before the point of redundancy as
possible. We can define places we could safely place a computation of e after
an earliest placement. A later placement is one that on all backward paths
from that point can find a down-safe and earliest place without going through
a computation of e (in which case we have not gone too far).

let later(e) ,
←−
A (¬use(e) U d safe(e) ∧ earliest(e))

The latest placement point is now defined as being a later placement point that
either computes e or does not have later placement points on all of its successors.

let latest(e) , later(e) ∧ (use(e) ∨ ¬AX(later(e)))

Computations of e are inserted at points that satisfy this latest predicate. These
points cover all the computations of e but are as close to the original computa-
tions as possible. The transformation inserts the calculation of e at this point
and store the result in some new variable h. All the other computations of e
will then just use the result stored in this variable. However, this is not always
ideal since a node that satisfies latest may calculate the result and put it in h
only to use it straight away and never later on in the program. There is no need
to introduce the new calculation when the only place it would be used is the
node it was introduced. To avoid this situation, the isolated predicate identifies
when a node will not pass on the use of a computation of e:

let isolated(e) , AX(A(¬use(e) U latest(e)))

36

MATCH

partial avail(e) @ n
fresh(h)

IN

APPLY ALL (insert(h, e) � remove(h, e))

Figure 25: Specification of lazy code motion

The transformation insert(h, e) inserts a calculation of e (storing it in variable
h) after nodes that satisfy latest(e) but not isolated(e):

let insert(h, e) , m : s =⇒ s;h := e if (latest(e) ∧ ¬isolated(e)) @ m

Calculations of e can be removed at program points that satisfy redundant(e),
that is points that are neither latest or isolated.

let redundant(e) , ¬(latest(e) ∨ isolated(e))

The removal transformation depends on where the redundant calculation occurs,
so it can be written in three variations: one for when the calculation occurs in
an assignment, one for when it occurs in a conditional and one for when it occurs
in a return statement.

let rem assign(h, e) , m : x := c[e] =⇒ x := c[h] if redundant(e) @ m

rem branch(h, e) , m : if (c[e]) =⇒ if (c[h]) if redundant(e) @ m

rem return(h, e) , m : ret(c[e]) =⇒ ret(c[h]) if redundant(e) @ m

Then remove(h, e) is the transformation that removes a redundant use of e (by
using the variable h instead).

let remove(h, e) , rem assign(h, e) � rem branch(h, e) � rem return(h, e)

The complete transformation, shown in Fig. 25, finds an expression that is par-
tially redundant and then performs all applications of both insert and remove.

9.5 Lazy strength reduction

Lazy strength reduction is a transformation that combines strength reduction
with code motion. Code motion recognises paths where an expression is avail-
able; with strength reduction the expression to be reduced is not directly avail-
able but can be made available by altering the paths leading up to its calculation.

The goal is to eliminate partially redundant calculations such as of the ex-
pression v ∗ c where v is a variable literal and c is a constant literal. Variable v
is said to be injured at a node if v is redefined at this node solely by addition
of a constant value. Formally:

let injured(v) , ∃d.stmt(v := v + d) ∧ conlit(d)

37

MATCH

partial availsr(v ∗ c) ∧
←−
A (transsr(e) U pp(n, e) ∨ avail(e)) @ m

fresh(h)
IN

APPLY ALL (insertsr(v, c, h) � removesr(v, c, h) � adjust(v, c))

Figure 26: Specification of lazy strength reduction

The value of the expression v ∗ c after execution of a node at which v is injured
can be found by adding on the constant c ∗ d. Using the notion of injured nodes
the trans predicate can be redefined for the expression v ∗ c to say that either
none of the constituents in the expression are redefined or that v is merely
injured.

let transsr(v, c) , ¬def(v) ∨ injured(v)

This adjusted transsr predicate allows the definition of the d safesr, earliestsr,
latersr, latestsr and isolatedsr predicates, analogous to the predicates used for
specifying lazy code motion:

let d safesr(v, c) , A(transsr(v, c) U use(v ∗ c))
let earliestsr(v, c) ,

←−
E (¬d safesr(v, c) U ¬transsr(v, c))

let latersr(v, c) ,
←−
A (¬use(v ∗ c) U d safesr(v, c) ∧ earliestsr(v, c))

let latestsr(v, c) , latersr(v, c) ∧ (use(v ∗ c) ∨ ¬AX(latersr(v, c)))
let isolatedsr(v, c) , AX(A(¬use(v ∗ c) U latestsr(v, c)))

Transformations insertsr(v, c, h) and removesr(v, c, h) are defined analo-
gously to the transformations used in the specification of lazy code motion.
In addition, any node that injures the value v ∗ c must be altered to update the
value h. The optimiser should do this only on injured nodes that have a path
to a node that will use h i.e. a node satisfying redundant(v, c). The adjust
transformation is therefore defined as:

let adjust(v, c) ,
m : v := v + d =⇒ v := v + d;h := h+ step
if step is d ∗ c

injured(v) @ m
E(¬latestsr(v, c) ∨ isolatedsr(v, c) U redundantsr(v, c)) @ m

The specification of lazy strength reduction, shown in Fig. 26, is similar to lazy
code motion but uses the new predicates and the additional adjust transforma-
tion.

This specification illustrates the strength of our approach, in which small
transformations are defined independently—and checked for correctness—and
then combined using strategies, resulting in the full optimisations. Each in-
dividual transformation may not result in improvement of code, but it is the
composition, either through specific strategies or indeed an overall loop, which

38

results in more efficient code. And each transformation can be re-used when
devising new optimisations.

Of course, matching these complicated side conditions to programs can be
very tedious. If at times the match is not made the code is not improved. Ideally
we want to obtain as many matches between side conditions and nodes in CFGs
as there are, and for this we apply model checking algorithms, as explained
next.

10 Applying transformations to programs

The TRANS methodology has been developed to enable transformations to be
specified easily and in a format that is suitable for formal analysis, and also
to apply the transformations so specified to actual programs. This is why we
chose to support coding of the side conditions in a language which supports
ease of formal verification and readability, namely CTL. However, to make the
system useful in optimisation of actual programs, it needs to allow programs to
be optimised in reasonable time and with the minimum of effort on the part of
the programming team. For this it is important that transformations on CFGs
be performed mechanically and efficiently.

The approach we develop is based on the idea that a set of transformations
may be applied many times to programs, and these may be quite large. Thus
the main goal is efficient and automatic matching of side conditions to nodes
in CFGs, as this is typically the most frequent operation. In this section we
present an algorithm that converts TRANS specifications into a variant called
TRANSµ, which is used to semantically model check against the control flow
graph.

10.1 Modal Mu-calculus

We introduce a language based on TRANS, which we call TRANSµ, where
side conditions are specified using modal mu-calculus [Koz83] rather than CTL.
TRANSµ is obtained by adding to the TRANS grammar following syntax:

node-condition ::= µ condition-var. node-condition
| condition-var

In order to tailor the system to our needs without loss of expressiveness com-
pared to CTL, there are some differences between standard modal mu-calculus
and the version presented here. The modal mu-calculus is frequently defined to
operate over a labelled transition system. Accordingly the ♦ and � operators
are frequently parameterised with action names, for example 〈a〉 or [b]. Since
CTL formulae do not express formulae in terms of labels, the mu-calculus we
use is defined simply in terms of the transition relation between states (→).
This simplification affects neither decidability nor efficiency.

Standard modal mu-calculus with both least and greatest fixed point opera-
tors forces the model checking algorithm into exponential complexity. However,
translation from CTL to modal mu-calculus and restricting the fragment of

39

modal mu-calculus needed ensures we can use the fragment which only requires
a least fixed point operator, as the formal monotonicity condition is satisfied
if the number of negations between a fixed point operator and any instance of
a bound variable is even. Monotonicity ensures the existence of a least fixed
point, and in fact, alternation free modal mu-calculus is checkable within a lin-
ear time [CS92]. While this result does not imply that our application process
is more or even as efficient as traditional dataflow analysis, it gives some rea-
son to believe that it is possible to develop an optimiser that matches program
nodes to side-conditions in a manner efficient enough to support practical use.
Our implementation of this approach, while still experimental, reinforces this
conclusion that performance can be made acceptable.

10.2 Conversion to TRANSµ

In order to translate a CTL formula into a corresponding mu-calculus formula
the rewrites for past and future quantifiers below are applied exhaustively:

AX(φ) = ¬EX(¬φ)
A(φ1Uφ2) = ¬(E(¬φ1UEX(True)) ∨ (¬φ1 ∧ ¬φ2))
E(φ1Uφ2) = µY. (φ2 ∧ FP) ∨ (φ1 ∧ EX(Y))
←−−
AX(φ) = ¬

←−−
EX(¬φ)

←−
A (φ1Uφ2) = ¬(

←−
E (¬φ1U

←−−
EX(True)) ∨ (¬φ1 ∧ ¬φ2))←−

E (φ1Uφ2) = µY. (φ2 ∧BP) ∨ (φ1 ∧
←−−
EX(Y))

FP = µZ. ¬EX(True) ∨ EX(Z)
BP = µZ. ¬

←−−
EX(True) ∨

←−−
EX(Z)

10.3 Matching side conditions

The algorithm for applying a transformation specification T (with side condition
φ) to the CFG G of the program being optimised is based on finding valuations σ
such that dφe(σ,G) is true, where d e is the semantic function for side conditions
from Definition 6.5. The solve function computes the set of valuations that
satisfy φ in graph G, that is, (solve(φ,G))∗ = {σ|dφe(σ,G)}.

Definition 10.1

solve(φ1 ∨ φ2, G) = solve(φ1, G) ∪ solve(φ2, G)
solve(φ1 ∧ φ2, G) = solve(φ1, G) ∩ solve(φ2, G)
solve(¬φ,G) = solve(φ,G)c

solve(∃x.φ,G) = {σ|∃τ ∈ solve(φ,G). ∀ν. ν 6= x⇒ σ(ν) = τ(ν)}
solve(p(x), G) = {σ|p(σ(x))}
solve(φ @ n,G) = ∪ : m ∈ Nodes(G) : {σ|σ(n) = m} ∩ (solve′(φ,m,G))

40

where

solve′(node(m),n,G) = {σ|σ(n) = m}
solve′(stmt(s),n,G) = match(s, I(n))
solve′(φ1 ∨ φ2,n,G) = solve′(φ1, n, G) ∪ solve′(φ2,n,G)
solve′(φ1 ∧ φ2,n,G) = solve′(φ1, n, G) ∩ solve′(φ2,n,G)
solve′(¬φ,n,G) = solve′(φ, n, G)c

solve′(EX(φ),n,G) = ∪ : (n, n′, e) ∈ Edges(G) : solve′(φ,n′,G)
solve′(

←−−
EX(φ),n,G) = ∪ : (n′, n, e) ∈ Edges(G) : solve′(φ,n′,G)

solve′(X,n,G) = n(X)
solve′(µX.φ,n,G) = lfp(λy.(solve′(φ, nB (X 7→ y), G){})

The predicate match above holds true iff the statement s is the instruction
at node n and n(X) refers to extracting the valuation bound to X at node n.
In the last rule, lfp is the least fixed point of a function and nB (X 7→ y) refers
to binding X to the value y. The operator c represents set complement.

10.4 Set Representation

Matching a transformation to a CFG can result in large sets of valuations,
and these need to be represented and manipulated efficiently. Binary Decision
Diagrams [Ake78] provide a useful way of representing sets through boolean
functions that can be used to test for set membership. Reducing ordered BDDs
(known as OBDDs) creates canonical forms for each set. Standardised and
efficient algorithms for computing conjunction, negation, disjunction and ex-
tensional quantification for reduced OBDDs , known as symbolic model check-
ing, are available [McM93, Bry86]. Symbolic model checking has been applied
recently to Alias Analysis [WL04, BLQ+03].

OBDDs can represent the set of valuations, but only within a known finite
domain. This finite restriction could pose a problem if the domain were infinite,
and in fact the set of objects O from Definition 6.2 is infinite. In manipulating
a particular CFG, however, the only elements that can be used in analyses
are elements of the flow-graph of the program being analysed, so in practice
we are restricted to a finite domain by only transforming one program, and
correspondingly one flow-graph, on any given pass.

The one exception to this required finiteness arises with the is predicate
from Section 6.3, as it ranges over all integers. This problem is resolved in the
following way: rather than generalising predicate ‘x is e∧φ’ to any expression, a
set of valuations is found for φ using the OBDD based system described above.
Once this valuation has been identified the is formula can be checked. If the
valuation is unbound due to a re-evaluation of φ then another binding is found
for x. In practice most uses of the is predicate fall into the aforementioned form,
including all of the uses in defining optimisations in Section 8 and Section 9.
Thus, the restriction does not limit the expressive power of TRANSin practical
terms

41

10.5 Implementation

We have implemented the methodology described above for translating TRANS
specifications and matching against a program. We have generated the inter-
mediate code from the LCC compiler [FH91] (rather than writing programs in
L0) and matched the side conditions of transformations. Visualisation of the
CFGs and the points of match was generated (using the udraw package) to allow
checking for accuracy of matching.

11 Discussion

The transformations from Sections 5, 8, and 9 demonstrate that TRANS is
flexible enough to describe a wide range of existing optimising transformations.
However, the language is still quite lightweight and it is not surprising that
some known transformations from the optimising compiler community cannot
be expressed using TRANS. Some transformations cannot be expressed due to
the action language not being expressive enough to capture features such as
inlining and loop unrolling. These limitations could be resolved by extending
the kinds of objects which can be matched in CFGs—for example, by matching
against blocks of code. Such extensions would not fundamentally change the
nature of TRANS; in particular the side condition language would be the same.

Some transformations, for example conditional constant propagation [WZ91],
cannot be expressed due to the limitations of the side condition language. In
[LGC02] a method is proposed where analyses of conditional constant propa-
gation can be specified as combinations of other simpler transformations. This
approach could possibly be added to TRANS by introducing new combination
operators to the language. This is a promising future extension to our work.

In the worst case, the language is extensible in ad-hoc ways i.e. with specific
predicates that perform certain analyses. For example the predicate my analysis
could be added with the specification:

̂my analysis(v, c, n) ≡
v can be replaced by c at n due to conditional constant propagation

provided that an algorithm can be written that returns a binary decision dia-
gram representation of this relation. In this case we can specify a transformation
by:

n : (x := v) =⇒ x := c if my analysis(v, c, n)

Throughout this paper we have referred to the language L0, which lacks
many of the features of modern programming languages. We introduce the
concept of an over-approximation through which the concepts can be carried to
a richer language. We say that a CTL formula P2 is an over-approximation of
a CTL formula P1 if for every instance that P1 holds, P2 must hold, but not
vice-versa. One corollary is that the semantic condition implied by the formula
still holds true in different languages: an implementation of transformations over
some language L is correct if the relevant formulae that are over-approximations

42

in L0 are also over-approximations in L. The idea is that the user only has to
think about the transformation in terms of a simple language like L0 and if the
transformation is correct in this simple language then it will be correct in a
more complicated language that extends L0.

One of the most significant differences between L0 and common languages is
aliasing, where variables and memory locations do not necessarily have a bijec-
tive relationship. In order to account for the inability to statically compute the
exact aliasing relationship under these conditions, many algorithms have been
developed that trade off accuracy of computation, with cost of computations
[ALSU07]. Therefore when computing alias sets or relations one differentiates
between must and may alias concepts. Variables x and y must alias each other
if on all paths through the program they refer to the same memory location at
some program point. They may alias each other if there exists a path where
they refer to the same memory location.

Within a TRANS implementation on a language with aliasing, the use and
def predicates must be redefined to take account of aliasing. Occurrences of
use(x)@n (where x and n are metavariables that bind to variables and nodes,
respectively) must be refined to mayuse(x)@n or mustuse(x)@n depending on
the aliasing conditions. This depends upon the polarity of the use predicate. If
the number of negations preceding the predicate is even the polarity is positive
and the occurrence can be replaced by mustuse, otherwise it has negative po-
larity and should be replaced by mayuse. This allows an over-approximation of
the original use predicate and is thus sound. The same reasoning applies to the
def predicate.

The ability to conservatively over-approximate is due to the modular na-
ture of TRANS definitions, and is a comment on the powerful nature of the
underlying system. An interesting extension will be to apply transformations
in an inter-procedural setting. A partial solution to this is in [Lac03]; however
the inter-procedural analysis provided there is not as effective as some inter-
procedural dataflow analysis e.g. [Kno98]. It may be possible to take some of
the ideas from the literature on this subject and provide more powerful inter-
procedural analysis for transformations specified in TRANS.

One of the key benefits of describing transformations as rewrite rules with
temporal logic side conditions is that it enables the implementation of tools
to automatically detect when and where these transformations apply to a par-
ticular program. However, for such tools to be truly useful in a real world
program development environment detection of applicability must be done very
efficiently. The method outlines in Section 10 is being explored further, and we
are in the process of checking the efficiency of our implementation on realistic
programs. In particular, when applying several transformations in sequence,
the efficiency of the transformation engine would be greatly improved with use
of an algorithm that incrementally executes the program analysis needed to de-
cide which transformation applies (i.e. re-use previous calculations used when
deciding that the last transformation applied). This seems viable since the
transformations change the program in a highly stylised and local manner. In
addition, others have already developed incremental model checking algorithms

43

that could be adapted [SS94] and an incremental algorithm for calculating reg-
ular path queries can be found in [dMDLS03]. Incremental data-flow analysis
algorithms can be found in [LR91] and [PS89].

The analysis of transformations could also be further investigated. A method
for proving the soundness of transformations has been described [LJWF04]; how-
ever, this method becomes quite cumbersome for proving soundness of trans-
formations of real programming languages. Research is needed into how ma-
chine assistance could be used to help prove soundness, perhaps using a semi-
automated theorem prover. How much user-interaction would be required is
unknown; it is as yet unknown whether determining the soundness of transfor-
mations specified in TRANS is decidable.

Another kind of formal analysis that can be applied to transformations spec-
ified in the manner described in this paper is that of interference analysis, i.e.
statically determining whether applying one transformation will cause another
transformation to either apply when it did not before or not apply when it did
before. The general idea is that the logical side conditions and transformations
can be combined (either algebraically or via automata) to describe the situation
under which interference can happen. This combined description can then be
checked for validity i.e. whether any program could possibly satisfy it. The free
variables in the transformation descriptions mean that this is not a trivial prob-
lem. A method is presented in [Lac03] that shows how to determine interference
properties for a sub-language of TRANS.

[Lac03] provides a general method for refining and then executing the trans-
formations specified in TRANS over complicated language features. We are
currently in the process of implementing such a system with the intention of
automating soundness checking for real programs.

12 Related work

Several systems have been developed for implementing program transformations
from specifications, and each presents a different balance between somewhat
conflicting goals: richness of the language to express transformations, support
for formal reasoning, and efficiency of application to real-world programs. This
section details some of these systems and compares them to the approach taken
by us.

12.1 DFA&OPT-Metaframe

The Metaframe system [KKKS96] is a toolkit for program analysis and trans-
formation. The complete toolkit is a large-scale project that provides libraries
and tools to aid the construction of industrial strength compilers. Part of this
system is a transformation tool called the DFA&OPT-Metaframe toolkit. This
toolkit in some respects bears the closest relation to the system described here
in that it also uses temporal logic as a specification language. Both systems
stem from Steffen’s work on data-flow analysis as model checking [Ste93b], and

44

in fact some of the transformations implemented by us have been catalogued by
Steffen.

There are, however, differences between the two systems. Metaframe does
not use first order temporal logic to specify properties and communicate the
results of the analysis to the transformation. The analyses are specified in
propositional temporal logic and the resulting program analysis functions are
called from a domain specific imperative programming language similar to Pas-
cal. The user writes a temporal logic formula that is automatically converted
into a program analyser, which can then be used in the writing of a compiler.
During the conversion of a temporal logic formula into an analysis function a
formula is partially evaluated to a model checker and optimised to produce an
analysis routine similar to that in hand-written compilers (in particular with no
loss of speed over the hand-written versions).

The system based on TRANS, as it stands, is not as suitable for compiler
construction as the approach above. Due to the high-level and general nature
of TRANS, the implementation will not be obviously as fast as equivalent hand-
written code or the more specific propositional temporal logic analysis found in
Metaframe. Since Metaframe includes a full programming language, it is also
more expressive. However, these disadvantages are a consequence of the higher
level abstraction chosen by us, and can be remedied with further work. On
the other hand, our approach has some advantages. Firstly, it supports simpler
specifications than propositional temporal logic, with no need for imperative
code. While the combination of L0 and TRANS is not as expressive as a system
that includes a full programming language, it does allow for more concise side
conditions. Secondly, having the side conditions and transformations combined
in the same simple language with no imperative features allows us to perform
formal analysis on the transformations. For example, previous work [LJWF02,
LJWF04] shows precisely how optimisation specifications can be proved to be
sound, that is, semantics preserving.

Several aspects of the Metaframe system suggest extensions to the work pre-
sented here. In particular, the techniques of partial evaluation of model checkers
with respect to a particular formula [SCK+95] could be adapted to provide a
more efficient implementation for TRANS than the prototype implementation
which we are currently using, based on our description in Section 10 [Lac03].

12.2 Genesis/GOSpeL

The Genesis system implements specifications in the transformation specifica-
tion language GOSpeL, where optimisations are specified through an ACTION
component (with operators for modifying, copying and removing statements of
a program similar to TRANS) and a TYPE and PRECOND component which
together are equivalent to the condition part of TRANS specifications.

Fig. 27 shows the specification of constant propagation in GOSpeL; we see
that this specification can quite easily be converted into TRANS. The ACTION
part of the specification states that the statement Sj is modified by replacing a

45

TYPE
Stmt: Si,Sj,Sl;

PRECOND
Code Pattern /* Find a constant definition */

any Si: Si.opc == assign AND type(Si.opr 2) == const;

Depend /* Use of Si with no other definitions */
any (Sj,pos):flow dep(Si,Sj,(=));
no (Sl,pos):flow dep(Sl,Sj,(=)) AND (Si != Sl)

AND operand(Sj,pos) != operand(Sl,pos);

ACTION /* Change use of Si in Sj to be constant */
modify(operand(Sj,pos),Si.opr 2);

Figure 27: Specification of constant propagation in GOSpeL

sub-term with a constant term, in TRANS this is specified as:

Sj : (y := e[x]) =⇒ y := e[c]

The Code Pattern in the specification binds a statement to Si which assigns a
variable to a constant, which is simple to write in TRANS: x := c @ Si ∧conlit(c)

The DEPEND part of the GOSpeL statement contains two parts, the first
indicating that Sj is flow dependent on Si, and the second that that Sj is
dependent on no statement other than Si. Flow dependence indicates whether
a variable is used in a statement that has a defining instance at a point it is
dependent on. It can be defined in TRANS in the following way:

let flow dep=(x, n,m) , use(x) @ m ∧ def(x) ∧ E(¬def(x) U node(m)) @ m

The complete direct translation into TRANS of the GOSpeL specification is:

Sj : (y := e[x]) =⇒ y := e[c]
if

x := c ∧ conlit(c) @ Si
flow dep=(x, Si, Sj)
¬∃Sl. flow dep=(x, Sl, Sj) ∧ ¬node(Si) @ Si

This specification of constant propagation is quite different from the one devel-
oped in Section 8.2. The one above is slightly less applicable since all defining
instances of the variable we are replacing must be defined at a single point (Si).

The GOSpeL system supports matching patterns of code on individual state-
ments and detecting four different types of flow dependencies between nodes,
shown in Fig. 28. Each of these dependencies, identified in [PW86], can be
expressed in TRANS, however GOSpeL also allows these dependencies to be

46

Dependency Description
flow dep(n,m) a variable definition at m is used at n.
anti dep(n,m) a use of a variable at n is re-defined at m.
out dep(n,m) a variable definition at m is output at n.
ctrl dep(n,m) n is a conditional statement and m occurs after one of its branches.

Figure 28: Dependencies in GOSpeL

altered with direction vectors. For example, the dependency ‘flow dep(n,m,<)’
states that an array element definition at n is indexed at a place before (under
the order of some iterative loop) the index of an array element used at point m.
Such predicates cannot be written in TRANS and the language would have to be
extended to handle inequality constraints. Another aspect of GOSpeL is that
it can match patterns binding variables to whole blocks of code and then move
and modify these to enable optimisations such as loop unrolling and inlining.
Again, this is not currently possible in TRANS but conservative extensions of
block matching operators have been investigated [LdM01]. Some of the trans-
formations described by us (such as partial redundancy elimination) have not
been investigated in GoSPeL.

Overall, the philosophy of the TRANS approach is different from GOSpeL in
that analyses in TRANS is broken down into smaller components, rather than
development of specific (and potentially quite complicated) analyses. This has
the advantage of increasing the expressiveness and allowing more uniform for-
mal analysis. Nevertheless, some analysis has been done on transformations in
GOSpeL, in particular an approach to prove (by pen-and-paper) that disabling
interference does not occur between two transformations is provided in [WS97].

12.3 Optimix

Optimix is a graph rewriting system developed by Assmann [Ass96, Ass99]. It
can be used for many purposes including specifying some of the transformations
described in this paper. It bears a similarity to TRANS since it is based on
modifying the control flow graph of a program. Optimix analyses a program by
repeatedly applying small rewrites to its graph. Each rewrite extends the graph
with nodes that do not represent part of the program but capture information
about the program. By using repeated application, each individual rewrite can
be quite simple and succinctly specified but combined rewrites propagate quite
complex information around the graph. This information, represented as extra
nodes or edges can then be used to mark where a program is to be transformed.

The use of a general method makes Optimix very expressive and useful for a
variety of transformation and analysis problems. It differs from the TRANS sys-
tem in that it uses the graph to store intermediate analysis information required
for the transformations. The process of matching a temporal logic formula, on
the other hand, provides all this information in one step and abstracts away the

47

detail of each step, from the point of view of the person guiding the optimisation.

12.4 Rewriting

There are numerous rewriting-based transformation systems for functional lan-
guages, as typically there is no need for complex side conditions. An early imple-
mentation of an automatic transformation system can be found in the TAMPR
system, which has been under development since the early ’70s [Boy70, Boy89].
TAMPR starts with a specification that is translated to pure lambda calcu-
lus, and rewriting is performed on pure lambda expressions. OPTRAN is also
based on rewriting, but it offers far more sophisticated pattern matching facili-
ties [LMW88]. TrafoLa is another system able to specify sophisticated syntactic
program patterns [Hec88]. The Glasgow Haskell compiler allows the program-
mer to add pragmas to code which allow extra rewrites to be performed on the
program during the compilation process [JTH01]. The system MAG [dMS01]
provides similar functionality but with more advanced mechanisms for resolving
side conditions that are functional equalities. TRANS differs from these systems
in having side conditions. These allow a more global view of the program, and
are of use when optimising imperative programs.

12.5 TTL

Kanade’s Temporal Transformation Logic (TTL) [KSK06, KSK07] is a system
similar to TRANS, that uses a CTL based proof technique. Kanade’s focus is au-
tomatic verification of the soundness of the transformations themselves. Accord-
ingly, instead of using the generic rewriting technique that TRANS uses, TTL
has a set of transformational primitives. Each primitive represents a common
element used within compiler optimisations, for example replacing an expres-
sion with a variable. Each of the transformational primitives has an associated
soundness condition that, if satisfied, implies the soundness of the transforma-
tion. The soundness of transformations within TTL can be proved using the
PVS system, which also supports validation of a trace from an instrumented
compiler.

The primary difference between TTL and TRANS is that transformation
primitives in TTL are less general. Whilst Kanade is able to show that TTL
allows automated soundness proofs of some sophisticated optimisations, such
as optimal code placement, other common optimisations, for example constant
propagation, have not yet been specified, due to the data structures used to im-
plement TTL. The use of specific transformational primitives also raises ques-
tions about how general his system is, most notably over the need to introduce
further primitives in future. TTL is also seen as a specification language, for
other compiler implementations, whilst TRANS can be refined and executed as
the optimisation stage of a compiler.

48

12.6 Cobalt and Rhodium

Lerner [LMC03] describes the Cobalt system, which supports automated prov-
ability and executable specifications. Rewrite rules are given with temporal
conditions expressed in a more restrictive form compared to CTL, which allows
the proof, once and for all, of the basic inductive form of the proof technique
which holds given sufficient optimisation specific conditions are met. The op-
timisation specific proof obligations can be discharged automatically using a
theorem prover, since they require no inductive heuristics.

The specific nature of Cobalt’s temporal conditions, though common to the
dataflow analysis approach, is limited when compared to the generic model
checking that TRANS performs with its CTL side conditions. This is one of the
main motivations given for developing Rhodium [LMRC05], which is another
domain specific language for developing compiler optimisations. Rhodium con-
sists of local rules that manipulate dataflow facts. This is a significant departure
in approach from TRANS, since it uses more traditional, data flow analysis based
specifications rather than temporal side conditions.

12.7 Other program transformation systems

The APTS system of Paige [Pai94] describes program transformations as rewrite
rules, with side conditions expressed as boolean functions on the abstract syntax
tree, and data obtained by program analyses. These analyses also have to be
coded by hand. Other transformation systems that suffer the same drawback
include Khepera [FNP97] and Txl [CCH95]. Datalog-like systems express pro-
gram analyses as logic programs [DRW96]. A more modern system is Stratego
[VBT98], which has sophisticated mechanisms for building transformers from a
set of labelled, unconditional rewrite rules. The CTADEL system [vE98] is a
program transformation system that has been used, amongst other things, to
transform code used in the mathematical modelling of meteorological phenom-
ena. The Vista system [ZCW+02] is a system of interactive program transfor-
mation aimed at the optimisation of programs for embedded systems. It has
a fixed selection of hard coded optimisations but has a very advanced user in-
terface for iteratively transforming, viewing and testing code. The SHARLIT
system [TH92] provides a toolkit for writing dataflow analyses that generate
C++ code. SHARLIT splits the specification of dataflow analyses into flow
functions, action routines and simplifier rules, and is intended to provide a par-
ticularly good toolkit for global, inter-procedural analysis. The specification
language closely resembles custom dataflow analysis, rather than being based
on temporal logic. It is evaluated with respect to paths on the CFG, but the
system enables sophisticated simplification rules that allow one to specify a wide
variety of analyses. This also allows it match information at every basic block
and still provide an efficient solution to its data-flow equations. The solutions
themselves are computed by an iterative algorithm. Whilst SHARLIT aims to
provide an efficient system within which to develop dataflow analyses it does
not offer a system within which to verify the soundness of the optimisations.

49

13 Conclusion

This paper presents a language and framework for specifying and executing opti-
mising transformations. A specification language for transformations (TRANS)
is introduced that combines elements of rewriting and temporal logic, and this
is paired with a model-checking approach which facilitates the application of
optimisations to code reminiscent of compiled programs. Many example trans-
formations, some of which are quite sophisticated, were presented to show the
flexibility of the language in specifying many useful compiler optimisations. The
main thesis of this paper is that it is possible to use a formally defined language
which supports rigorous analysis to specify and implement a wide range of re-
alistic optimisations.

We believe that the transformations, as they are written, are quite readable
and capture the level of detail found in informal descriptions. The variety of
optimisations described in this paper illustrates the flexibility of the TRANS lan-
guage for specifying realistic optimisations. The underlying CTL-based founda-
tion implies that formal analysis of the transformations is also possible, and we
have started to embed the language in the Isabelle theorem prover [NPW02].

We have based this work on a simple imperative language, but we are in
the process of porting the methodology into a more realistic setting and show
that the transformations are effective. We are exploring the use of the Soot
framework for Java [VRCG+99] which allows extraction of intermediate code
(in Jimple representation) and re-injection of optimised code: this will allow us
to compare the results from our tool with code generated in the standard way,
and therefore illustrate how it can support the generation of a usable optimising
phase from specifications.

14 Acknowledgements

David Lacey acknowledges the support and guidance from the Oxford University
Programming Tools Group. Richard Warburton is funded by the EPSRC under
grant EP/DO32466/1 “Verification of the optimising phase of a compiler”.

References

[Ake78] Sheldon B. Akers. Binary decision diagrams. IEEE Transactions
on Computers, 27(6):509–516, June 1978.

[ALSU07] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques, and Tools. Pearson Education;,
2nd edition edition, 2007.

[App98] A. W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, 1998.

50

[Ass96] U. Assmann. How to uniformly specify program analysis and
transformation with graph rewrite systems. In P. Fritzson, edi-
tor, Compiler Construction 1996, volume 1060 of Lecture Notes in
Computer Science. Springer, 1996.

[Ass99] Uwe Assmann. OPTIMIX, A Tool for Rewriting and Optimizing
Programs. In Graph Grammar Handbook, Vol. II. Chapman-Hall,
1999.

[BLQ+03] Marc Berndl, Ondrej Lhoták, Feng Qian, Laurie Hendren, and
Navindra Umanee. Points-to analysis using bdds. In PLDI ’03:
Proceedings of the ACM SIGPLAN 2003 conference on Program-
ming language design and implementation, pages 103–114, New
York, NY, USA, 2003. ACM.

[Boy70] J. M. Boyle. A transformational component for programming lan-
guages grammar. Technical Report ANL-7690, Argonne National
Laboratory, IL, 1970.

[Boy89] J. M. Boyle. Abstract programming and program transformation.
In Software Reusability Volume 1, pages 361–413. Addison-Wesley,
1989.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function ma-
nipulation. IEE Transactions on Computers C-35, 12:1035–1044,
December 1986.

[CCH95] J. R. Cordy, I. H. Carmichael, and R. Halliday. The TXL pro-
gramming language, version 8. Legasys Corporation, April 1995.

[CES96] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verifica-
tion of finite-state concurrent systems using temporal logic specifi-
cations. ACM Transactions on Programming Languages and Sys-
tems, 8:244–263, 1996.

[CS92] R. Cleaveland and B. Steffen. A linear–time model–checking al-
gorithm for the alternation–free modal mu–calculus. In Kim G.
Larsen and Arne Skou, editors, Proceedings of Computer Aided
Verification (CAV ’91), volume 575, pages 48–58, Berlin, Germany,
1992. Springer.

[dMDLS03] Oege de Moor, Stephen Drape, David Lacey, and Ganesh Sittam-
palam. Incremental program analysis via language factors. Pro-
gram Tools Group, Oxford., 2003.

[dMS01] Oege de Moor and Ganesh Sittampalam. Higher-order matching
for program transformation. Theoretical Computer Science, 269(1-
2):135–162, October 2001.

51

[DRW96] Steven Dawson, C. R. Ramakrishnan, and David S. Warren. Prac-
tical program analysis using general purpose logic programming
systems — A case study. ACM SIGPLAN Notices, 31(5):117–126,
May 1996.

[FH91] C. W. Fraser and D. R. Hanson. A retargetable compiler for ANSI
C. Technical Report CS–TR–303–91, Princeton, N.J., 1991.

[FNP97] R. E. Faith, L. S. Nyland, and J. F. Prins. KHEPERA: A sys-
tem for rapid implementation of domain-specific languages. In
Proceedings USENIX Conference on Domain-Specific Languages,
pages 243–255, 1997.

[Hec88] R. Heckmann. A functional language for the specification of com-
plex tree transformations. In ESOP ’88, Lecture Notes in Com-
puter Science, pages 175–190. Springer-Verlag, 1988.

[JTH01] Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. Playing
by the rules: Rewriting as a practical optimisation technique in
ghc. In Proceedings of the 2001 Haskell Workshop, pages 203–233,
September 2001.

[KKKS96] M. Klein, D. Knoop, D. Koschutzki, and B. Steffen. DFA & OPT-
METAFrame: A toolkit for program analysis and optimization. In
Procs. of the 2nd International Workshop on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS ’96), vol-
ume 1055 of Lecture Notes in Computer Science, pages 422–426.
Springer, 1996.

[Kno98] Jens Knoop. Optimal interprocedural program optimization: A new
framework and its application. Number 1428 in LNCS Tutorial.
Springer-Verlag, 1998.

[Koz83] Dexter Kozen. Results on the proposition mu-calculus. Theoretical
Computer Science, 27, 1983.

[KRS] J. Knoop, O. Ruthing, and B. Steffen. Lazy strength reduction.

[KRS92] J. Knoop, O. Ruething, and B. Steffen. Lazy code motion. In Pro-
ceedings of the ACM SIGPLAN ’92 Conference on Programming
Language Design and Implementation, volume 27, pages 224–234,
San Francisco, CA, June 1992.

[KSK06] Aditya Kanade, Amitabha Sanyal, and Uday Khedker. A PVS
based framework for validating compiler optimizations. In SEFM
’06: Proceedings of the Fourth IEEE International Conference on
Software Engineering and Formal Methods, pages 108–117, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

52

[KSK07] Aditya Kanade, Amitabha Sanyal, and Uday Khedker. Structur-
ing optimizing transformations and proving them sound. ENTCS,
176(3), 2007. Proceedings of the 5th International Workshop on
Compiler Optimization meets Compiler Verification (COCV’06).

[Lac03] David Lacey. Program Transformation using Temporal Logic Spec-
ifications. PhD thesis, Oxford University Computing Laboratory,
2003.

[LdM01] D Lacey and O de Moor. Imperative program transformation by
rewriting. In R Wilhelm, editor, Compiler Construction, volume
2027 of Lecture Notes in Computer Science, pages 52–68. Springer
Verlag, 2001.

[LGC02] Sorin Lerner, David Grove, and Craig Chambers. Combining
dataflow analyses and transformations. In Conference Record of
the 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2002), 2002.

[LJWF02] David Lacey, Neil Jones, Eric Van Wyk, and Carl Christian Fred-
erikson. Proving the correctness of classical compiler optimisation
by temporal logic. In Priniciples of Programming Languages, 2002.

[LJWF04] David Lacey, Neil Jones, Eric Van Wyk, and Carl Christian Fred-
erikson. Proving correctness of compiler optimizations by temporal
logic. Higher-Order and Symbolic Computation, 17(2), 2004.

[LMC03] S. Lerner, T. Millstein, and C. Chambers. Automatically proving
the correctness of compiler optimizations, 2003.

[LMRC05] Sorin Lerner, Todd Millstein, Erika Rice, and Craig Chambers.
Automated soundness proofs for dataflow analyses and transfor-
mations via local rules. In POPL ’05: Proceedings of the 32nd
ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 364–377, New York, NY, USA, 2005. ACM
Press.

[LMW88] P. Lipps, U. Mönke, and R. Wilhelm. OPTRAN – a lan-
guage/system for the specification of program transformations:
system overview and experiences. In Proceedings 2nd Workshop
on Compiler Compilers and High Speed Compilation, volume 371
of Lecture Notes in Computer Science, pages 52–65, 1988.

[LR91] W. Landi and B. Ryder. Pointer induced aliasing: A problem
classification. In ACM Symposium on Principles of Programming
Languages, pages 93–103, 1991.

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Pub-
lishers, 1993.

53

[MOR01] Markus Müller-Olm and Oliver Rüthing. On the complexity of
constant propagation. In D. Sands, editor, ESOP, volume 2028 of
LNCS. Springer-Verlag, 2001.

[Muc97] S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Marcus Wenzel. Is-
abelle/HOL: A Proof Assistant for Higher-order Logic, volume
2283 of LNCS. Springer-Verlag, 2002.

[Pai94] R. Paige. Viewing a program transformation system at work.
In Proceedings Programming Language Implementation and Logic
Programming (PLILP), and Algebraic and Logic Programming
(ALP), volume 844 of Lecture Notes in Computer Science, pages
5–24. Springer, 1994.

[PS89] Lori L. Pollock and Mary-Lou Soffa. An incremental version of
iterative data flow analysis. IEEE Transactions on Software Engi-
neering, 15(12):1537–1549, December 1989.

[PW86] David A. Padua and Michael J. Wolfe. Advanced compiler op-
timizations for supercomputers. Communications of the ACM,
29(12):1184–1201, 1986.

[SCK+95] B. Steffen, A. Classen, M. Klein, J. Knoop, and T. Margaria. The
fixpoint-analysis machine. In Concurrency Theory, 6th Interna-
tional Conference (CONCUR ’95), volume 962. LNCS, Springer-
Verlag, 1995.

[SS94] Oleg Sokolsky and Scott Smolka. Incremental model checking in
the modal µ-calculus. In David Dill, editor, Computer Aided Ver-
ification, volume 818 of LNCS, pages 351–363. Springer-Verlag,
1994.

[Ste91] B. Steffen. Data flow analysis as model checking. In Proceedings
of Theoretical Aspects of Computer Science, pages 346–364, 1991.

[Ste93a] B. Steffen. Generating data flow analysis algorithms from modal
specifications. Science of Computer Programming, 21:115–139,
1993.

[Ste93b] B. Steffen. Generating data flow analysis algorithms from modal
specifications. Science of Computer Programming, 21:115–139,
1993.

[Tar73] Robert Tarjan. Testing flow graph reducibility. In STOC ’73: Pro-
ceedings of the fifth annual ACM symposium on Theory of comput-
ing, pages 96–107, New York, NY, USA, 1973. ACM.

54

[TH92] Steven W. K. Tjiang and John L. Hennessy. Sharlit: a tool for
building optimizers. SIGPLAN Not., 27(7):82–93, 1992.

[VBT98] E. Visser, Z. Benaissa, and A. Tolmach. Building program opti-
mizers with rewriting strategies. In International Conference on
Functional Programming ’98, ACM SigPlan, pages 13–26. ACM
Press, 1998.

[vE98] Robert van Engelen. Ctadel: A Generator of Efficient Codes. PhD
thesis, Leiden University, 1998.

[vE01] Robert A. van Engelen. Efficient symbolic analysis for optimizing
compilers. In R Wilhelm, editor, Compiler Construction, volume
2027 of Lecture Notes in Computer Science. Springer Verlag, 2001.

[VRCG+99] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren,
Patrick Lam, and Vijay Sundaresan. Soot - a java bytecode op-
timization framework. In CASCON ’99: Proceedings of the 1999
conference of the Centre for Advanced Studies on Collaborative re-
search, page 13. IBM Press, 1999.

[Whi91] Deborah Whitfield. A Unifying Framework for Optimising Trans-
formations. PhD thesis, University of Pittsburgh, 1991.

[WL04] John Whaley and Monica S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. SIGPLAN
Not., 39(6):131–144, 2004.

[WS97] D. L. Whitfield and M. L. Soffa. An approach for exploring code
improving transformations. ACM Transactions on Programming
Languages and Systems, 19(6):1053–1084, 1997.

[WZ91] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation
with conditional branches. ACM Transactions on Programming
Languages and Systems (TOPLAS), 13(2):181–210, April 1991.

[ZCW+02] Wankang Zhao, Baoshen Cai, David Whalley, Mark W.Bailey,
Robert Van Engelen, Xin Yuan, Jason D. Hiser, Jack W. David-
son, Kyle Gallivan, and Douglas L. Jones. Vista: A system for
interactive code improvement. In LCTES’02-SCOPES’02. ACM,
June 2002.

55

