127 research outputs found
Birth preparedness and complication readiness (BPCR) among pregnant women in hard-to-reach areas in Bangladesh:BPCR in hard-to-reach areas of Bangladesh
Birth preparedness and complication readiness aims to reduce delays in care seeking, promote skilled birth attendance, and facility deliveries. Little is known about birth preparedness practices among populations living in hard-to-reach areas in Bangladesh.To describe levels of birth preparedness and complication readiness among recently delivered women, identify determinants of being better prepared for birth, and assess the impact of greater birth preparedness on maternal and neonatal health practices.A cross-sectional survey with 2,897 recently delivered women was undertaken in 2012 as part of an evaluation trial done in five hard-to-reach districts in rural Bangladesh. Mothers were considered well prepared for birth if they adopted two or more of the four birth preparedness components. Descriptive statistics and multivariable logistic regression were used for analysis.Less than a quarter (24.5%) of women were considered well prepared for birth. Predictors of being well-prepared included: husband's education (OR = 1.3; CI: 1.1-1.7), district of residence, exposure to media in the form of reading a newspaper (OR = 2.2; CI: 1.2-3.9), receiving home visit by a health worker during pregnancy (OR = 1.5; CI: 1.2-1.8), and receiving at least 3 antenatal care visits from a qualified provider (OR = 1.4; CI: 1.0-1.9). Well-prepared women were more likely to deliver at a health facility (OR = 2.4; CI: 1.9-3.1), use a skilled birth attendant (OR = 2.4, CI: 1.9-3.1), practice clean cord care (OR = 1.3, CI: 1.0-1.5), receive post-natal care from a trained provider within two days of birth for themselves (OR = 2.6, CI: 2.0-3.2) or their newborn (OR = 2.6, CI: 2.1-3.3), and seek care for delivery complications (OR = 1.8, CI: 1.3-2.6).Greater emphasis on BPCR interventions tailored for hard to reach areas is needed to improve skilled birth attendance, care seeking for complications and essential newborn care and facilitate reductions in maternal and neonatal mortality in low performing districts in Bangladesh
Analysis of the Ex Vivo and In Vivo Antiretroviral Activity of Gemcitabine
Replication of retroviral and host genomes requires ribonucleotide reductase to convert rNTPs to dNTPs, which are then used as substrates for DNA synthesis. Inhibition of ribonucleotide reductase by hydroxyurea (HU) has been previously used to treat cancers as well as HIV. However, the use of HU as an antiretroviral is limited by its associated toxicities such as myelosuppression and hepatotoxicity. In this study, we examined the ribonucleotide reductase inhibitor, gemcitabine, both in cell culture and in C57Bl/6 mice infected with LP-BM5 murine leukemia virus (LP-BM5 MuLV, a murine AIDS model). Gemcitabine decreased infectivity of MuLV in cell culture with an EC50 in the low nanomolar range with no detectable cytotoxicity. Similarly, gemcitabine significantly decreased disease progression in mice infected with LP-BM5. Specifically, gemcitabine treatment decreased spleen size, plasma IgM, and provirus levels compared to LP-BM5 MuLV infected, untreated mice. Gemcitabine efficacy was observed at doses as low as 1 mg/kg/day in the absence of toxicity. Higher doses of gemcitabine (3 mg/kg/day and higher) were associated with toxicity as determined by a loss in body mass. In summary, our findings demonstrate that gemcitabine has antiretroviral activity ex vivo and in vivo in the LP-BM5 MuLV model. These observations together with a recent ex vivo study with HIV-1[1], suggest that gemcitabine has broad antiretroviral activity and could be particularly useful in vivo when used in combination drug therapy
The Regulation of Skeletal Muscle Protein Turnover during the Progression of Cancer Cachexia in the ApcMin/+ Mouse
Muscle wasting that occurs with cancer cachexia is caused by an imbalance in the rates of muscle protein synthesis and degradation. The ApcMin/+ mouse is a model of colorectal cancer that develops cachexia that is dependent on circulating IL-6. However, the IL-6 regulation of muscle protein turnover during the initiation and progression of cachexia in the ApcMin/+ mouse is not known. Cachexia progression was studied in ApcMin/+ mice that were either weight stable (WS) or had initial (≤5%), intermediate (6–19%), or extreme (≥20%) body weight loss. The initiation of cachexia reduced %MPS 19% and a further ∼50% with additional weight loss. Muscle IGF-1 mRNA expression and mTOR targets were suppressed with the progression of body weight loss, while muscle AMPK phosphorylation (Thr 172), AMPK activity, and raptor phosphorylation (Ser 792) were not increased with the initiation of weight loss, but were induced as cachexia progressed. ATP dependent protein degradation increased during the initiation and progression of cachexia. However, ATP independent protein degradation was not increased until cachexia had progressed beyond the initial phase. IL-6 receptor antibody administration prevented body weight loss and suppressed muscle protein degradation, without any effect on muscle %MPS or IGF-1 associated signaling. In summary, the %MPS reduction during the initiation of cachexia is associated with IGF-1/mTOR signaling repression, while muscle AMPK activation and activation of ATP independent protein degradation occur later in the progression of cachexia. IL-6 receptor antibody treatment blocked cachexia progression through the suppression of muscle protein degradation, while not rescuing the suppression of muscle protein synthesis. Attenuation of IL-6 signaling was effective in blocking the progression of cachexia, but not sufficient to reverse the process
Overview of Current Drugs and Molecules in Development for Spinal Muscular Atrophy Therapy
The full text of this article can be found here: https://link.springer.com/article/10.1007/s40265-018-0868-
Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.
Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage
Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment
Cancer cells show a broad spectrum of bioenergetic states, with some cells using aerobic glycolysis while others rely on oxidative phosphorylation as their main source of energy. In addition, there is mounting evidence that metabolic coupling occurs in aggressive tumors, between epithelial cancer cells and the stromal compartment, and between well-oxygenated and hypoxic compartments. We recently showed that oxidative stress in the tumor stroma, due to aerobic glycolysis and mitochondrial dysfunction, is important for cancer cell mutagenesis and tumor progression. More specifically , increased autophagy/mitophagy in the tumor stroma drives a form of parasitic epithelial-stromal metabolic coupling. These findings explain why it is effective to treat tumors with either inducers or inhibitors of autophagy, as both would disrupt this energetic coupling. We also discuss evidence that glutamine addiction in cancer cells produces ammonia via oxidative mitochondrial metabolism. Ammonia production in cancer cells, in turn, could then help maintain autophagy in the tumor stromal compartment. In this vicious cycle, the initial glutamine provided to cancer cells would be produced by autophagy in the tumor stroma. Thus, we believe that parasitic epithelial-stromal metabolic coupling has important implications for cancer diagnosis and therapy, for example, in designing novel metabolic imaging techniques and establishing new targeted therapies. In direct support of this notion, we identified a loss of stromal caveolin-1 as a marker of oxidative stress, hypoxia, and autophagy in the tumor microenvironment, explaining its powerful predictive value. Loss of stromal caveolin-1 in breast cancers is associated with early tumor recurrence, metastasis, and drug resistance, leading to poor clinical outcome
Efeitos da aplicação do laser de baixa potência na regeneração do nervo isquiático de ratos
Os nervos periféricos sofrem constantes lesões de origem traumática, o que resulta em perdas funcionais. A terapia com laser de baixa potência vem sendo utilizada para minimizar os efeitos maléficos da inflamação e acelerar o processo de cicatrização dos tecidos lesados. Este estudo teve como objetivo verificar o efeito da irradiação do laser 830 nm no comportamento do nervo isquiático de ratos submetido a esmagamento. Foram utilizados 20 ratos, todos tendo tido o nervo isquiático esmagado, divididos em 4 grupos (n=5): P7 e P14, tratamento placebo por 7 e 14 dias; L7 e L14, tratamento por laser (dosagem de 4 J/cm²) por 7 e 14 dias. Os animais dos grupos P7 e P14 foram submetidos aos mesmos procedimentos, mas com o laser desligado. Os parâmetros analisados foram presença de infiltrado inflamatório e fibroblastos, destruição da bainha de mielina e degeneração axonal. Na análise estatÃstica foi observada diferença estatÃstica com relação a três parâmetros: os animais do grupo L14 apresentaram maior quantidade de fibroblastos (p=0,0001), menor degeneração da bainha de mielina (p=0,007) e menor quantidade de infiltrado inflamatório (p=0,001). A aplicação do laser de baixa potência contribuiu para a redução do processo inflamatório decorrente da lesão do nervo isquiático de ratos.Peripheral nerves are commonly subject to traumatic injuries, leading to functional loss. Low-power laser therapy has been used in order to minimize harmful effects of inflammation and to accelerate healing of injured tissues. The purpose of this study was to assess the effect of 830 nm-laser irradiation on rat sciatic nerves submitted to crush. Twenty male Wistar rats had their sciatic nerve crushed and were divided into 4 groups (n=5): Sham7 and Sham14, placebo-treated for 7 and 14 days; L7 and L14, laser-treated (at 4 J/cm²) for 7 and 14 days. Sham group animals were submitted to the same procedures, but with the laser turned off. Assessed parameters were inflammatory infiltrates, fibroblasts, myelin sheath destruction, and axonal degeneration. The statistical analysis showed significant differences in three parameters: L14 animals showed more fibroblasts (p=0.0001), lesser myelin sheath degeneration (p=0.007), and lesser inflammatory infiltrates (p=0.001). Low-power laser therapy hence contributed to reduce the inflammatory process due to rat sciatic nerve injury
- …