10 research outputs found

    Identification of a ERCC5 c.2333T>C (L778P) Variant in Two Tunisian Siblings With Mild Xeroderma Pigmentosum Phenotype

    Get PDF
    Xeroderma pigmentosum (XP) is a rare autosomal recessive disorder due to a defect in the nucleotide excision repair (NER) DNA repair pathway, characterized by severe sunburn development of freckles, premature skin aging, and susceptibility to develop cancers at an average age of eight. XP is an example of accelerated photo-aging. It is a genetically and clinically heterogeneous disease. Eight complementation groups have been described worldwide. In Tunisia, five groups have been already identified. In this work, we investigated the genetic etiology in a family with an atypically mild XP phenotype. Two Tunisian siblings born from first-degree consanguineous parents underwent clinical examination in the dermatology department of the Charles Nicolle Hospital on the basis of acute sunburn reaction and mild neurological disorders. Blood samples were collected from two affected siblings after written informed consent. As all mutations reported in Tunisia have been excluded using Sanger sequencing, we carried out mutational analysis through a targeted panel of gene sequencing using the Agilent HaloPlex target enrichment system. Our clinical study shows, in both patients, the presence of achromic macula in sun exposed area with dermatological feature suggestive of Xeroderma pigmentosum disease. No developmental and neurological disorders were observed except mild intellectual disability. Genetic investigation shows that both patients were carriers of an homozygous T to C transition at the nucleotide position c.2333, causing the leucine to proline amino acid change at the position 778 (p.Leu778Pro) of the ERCC5 gene, and resulting in an XP-G phenotype. The same variation was previously reported at the heterozygous state in a patient cell line in Europe, for which no clinical data were available and was suggested to confer an XP/CS phenotype based on functional tests. This study contributes to further characterization of the mutation spectrum of XP in consanguineous Tunisian families and is potentially helpful for early diagnosis. It also indicates that the genotype-phenotype correlation is not always coherent for patients with mild clinical features. These data therefore suggest that targeted NGS is a highly informative diagnostic strategy, which can be used for XP molecular etiology determination

    Differential Expression of ATM, NF-KB, PINK1 and Foxo3a in Radiation-Induced Basal Cell Carcinoma

    No full text
    Research in normal tissue radiobiology is in continuous progress to assess cellular response following ionizing radiation exposure especially linked to carcinogenesis risk. This was observed among patients with a history of radiotherapy of the scalp for ringworm who developed basal cell carcinoma (BCC). However, the involved mechanisms remain largely undefined. We performed a gene expression analysis of tumor biopsies and blood of radiation-induced BCC and sporadic patients using reverse transcription-quantitative PCR. Differences across groups were assessed by statistical analysis. Bioinformatic analyses were conducted using miRNet. We showed a significant overexpression of the FOXO3a, ATM, P65, TNF-α and PINK1 genes among radiation-induced BCCs compared to BCCs in sporadic patients. ATM expression level was correlated with FOXO3a. Based on receiver-operating characteristic curves, the differentially expressed genes could significantly discriminate between the two groups. Nevertheless, TNF-α and PINK1 blood expression showed no statistical differences between BCC groups. Bioinformatic analysis revealed that the candidate genes may represent putative targets for microRNAs in the skin. Our findings may yield clues as to the molecular mechanism involved in radiation-induced BCC, suggesting that deregulation of ATM-NF-kB signaling and PINK1 gene expression may contribute to BCC radiation carcinogenesis and that the analyzed genes could represent candidate radiation biomarkers associated with radiation-induced BCC

    Combining Gene Mutation with Expression of Candidate Genes to Improve Diagnosis of Escobar Syndrome

    No full text
    Escobar syndrome is a rare, autosomal recessive disorder that affects the musculoskeletal system and the skin. Mutations in the CHRNG and TPM2 genes are associated with this pathology. In this study, we conducted a clinical and genetic investigation of five patients and also explored via in silico and gene expression analysis their phenotypic variability. In detail, we identified a patient with a novel composite heterozygous variant of the CHRNG gene and two recurrent mutations in both CHRNG and TPM2 in the rest of the patients. As for the clinical particularities, we reported a list of modifier genes in a patient suffering from myopathy. Moreover, we identified decreased expression of IGF-1, which could be related to the short stature of Escobar patients, and increased expression of POLG1 specific to patients with TPM2 mutation. Through this study, we identified the genetic spectrum of Escobar syndrome in the Tunisian population, which will allow setting up genetic counseling and prenatal diagnosis for families at risk. In addition, we highlighted relevant biomarkers that could differentiate between patients with different genetic defects

    Immunity in the Progeroid Model of Cockayne Syndrome: Biomarkers of Pathological Aging

    No full text
    Cockayne syndrome (CS) is a rare autosomal recessive disorder that affects the DNA repair process. It is a progeroid syndrome predisposing patients to accelerated aging and to increased susceptibility to respiratory infections. Here, we studied the immune status of CS patients to determine potential biomarkers associated with pathological aging. CS patients, as well as elderly and young, healthy donors, were enrolled in this study. Complete blood counts for patients and donors were assessed, immune cell subsets were analyzed using flow cytometry, and candidate cytokines were analyzed via multi-analyte ELISArray kits. In CS patients, we noticed a high percentage of lymphocytes, an increased rate of intermediate and non-classical monocytes, and a high level of pro-inflammatory cytokine IL-8. In addition, we identified an increased rate of particular subtypes of T Lymphocyte CD8+ CD28− CD27−, which are senescent T cells. Thus, an inflammatory state was found in CS patients that is similar to that observed in the elderly donors and is associated with an immunosenescence status in both groups. This could explain the CS patients’ increased susceptibility to infections, which is partly due to an aging-associated inflammation process

    Heterogeneous clinical features in Cockayne syndrome-A patients with the same mutation and in siblings

    No full text
    International audienceBackgroundCockayne syndrome (CS) is a rare autosomal recessive disorder caused by mutations in ERCC6/CSB or ERCC8/CSA that participate in transcription-coupled nucleotide excision repair (TC-NER) of UV-induced DNA damage. CS patients display a large heterogeneity of clinical symptoms and severities, the reason of which is not fully understood, and little data is available for affected siblings. CS is largely undiagnosed in North Africa.MethodsWe report here the clinical description as well as genetic and functional characterization of eight North African CS patients, including siblings. These patients, who belonged to six unrelated families, underwent complete clinical examination and biochemical analyses. Sanger sequencing was performed for the recurrent mutation in five families, and targeted gene sequencing for one patient of the other family. We also performed RRS (Recovery RNA Synthesis) to confirm the functional impairment of DNA repair in the identified mutations.ResultsSix out of eight patients carried a homozygous indel mutation (c.598_600delinsAA) in exon 7 of ERCC8, and displayed a variable clinical spectrum, including between siblings, despite sharing the same mutation. The other two patients were Tunisian siblings who carried a homozygous splice-site variant in ERCC8 (c.843 + 1 G > C). They presented more severe clinical manifestations, which are in general rarely associated with CSA mutations, leading to gastrostomy and hepatic damage. Impaired TC-NER was confirmed by RRS in six tested patients.ConclusionsThis study provides the first deep characterization of case series of rare CS-A patients in North Africa. They carry mutations described to date only in this region and the Middle-East. We also provide the largest characterization of unrelated patients, as well as siblings, with the same mutation, providing a framework for dissecting elusive genotype-phenotype correlations in CS

    Identification and Characterization of a Novel Recurrent ERCC6 Variant in Patients with a Severe Form of Cockayne Syndrome B

    No full text
    International audienceCockayne syndrome (CS) is a rare disease caused by mutations in ERCC6/CSB or ERCC8/CSA. We report here the clinical, genetic, and functional analyses of three unrelated patients mutated in ERCC6/CSB with a severe phenotype. After clinical examination, two patients were investigated via next generation sequencing, targeting seventeen Nucleotide Excision Repair (NER) genes. All three patients harbored a novel, c.3156dup, homozygous mutation located in exon 18 of ERCC6/CSB that affects the C-terminal region of the protein. Sanger sequencing confirmed the mutation and the parental segregation in the three families, and Western blots showed a lack of the full-length protein. NER functional impairment was shown by reduced recovery of RNA synthesis with proficient unscheduled DNA synthesis after UV-C radiations in patient-derived fibroblasts. Despite sharing the same mutation, the clinical spectrum was heterogeneous among the three patients, and only two patients displayed clinical photosensitivity. This novel ERCC6 variant in Tunisian patients suggests a founder effect and has implications for setting-up prenatal diagnosis/genetic counselling in North Africa, where this disease is largely undiagnosed. This study reveals one of the rare cases of CS clinical heterogeneity despite the same mutation. Moreover, the occurrence of an identical homozygous mutation, which either results in clinical photosensitivity or does not, strongly suggests that this classic CS symptom relies on multiple factors

    Case Report: Identification of Novel Variants in ERCC4 and DDB2 Genes in Two Tunisian Patients With Atypical Xeroderma Pigmentosum Phenotype

    No full text
    International audienceXeroderma Pigmentosum (XP) is a rare genetic disorder affecting the nucleotide excision repair system (NER). It is characterized by an extreme sensitivity to sunlight that induces cutaneous disorders such as severe sunburn, freckling and cancers. In Tunisia, six complementation groups have been already identified. However, the genetic etiology remains unknown for several patients. In this study, we investigated clinical characteristics and genetic defects in two families with atypical phenotypes originating from the central region in Tunisia. Clinical investigation revealed mild cutaneous features in two patients who develop multiple skin cancers at later ages, with no neurological disorders. Targeted gene sequencing revealed that they carried novel variants. A homozygous variation in the ERCC4 gene c.1762G>T, p.V588F, detected in patient XP21. As for patient XP134, he carried two homozygous mutations in the DDB2 gene c.613T>C, p.C205R and c.618C>A, p.S206R. Structural modeling of the protein predicted the identified ERCC4 variant to mildly affect protein stability without affecting its functional domains. As for the case of DDB2 double mutant, the second variation seems to cause a mild effect on the protein structure unlike the first variation which does not seem to have an effect on it. This study contributes to further characterize the mutation spectrum of XP in Tunisian families. Targeted gene sequencing accelerated the identification of rare unexpected genetic defects for diagnostic testing and genetic counseling
    corecore