388 research outputs found

    Non-destructive, high-content analysis of wheat grain traits using X-ray micro computed tomography

    Get PDF
    Background: Wheat is the most widely grown crop in temperate climates for food and animal feed. In order to meet the demands of the predicted population increase in an ever-changing climate, wheat production needs to dramatically increase. Spike and grain traits are critical determinants of final yield and grain uniformity a commercially desired trait, but their analysis is laborious and often requires destructive harvest. One of the current challenges is to develop an accurate, non-destructive method for spike and grain trait analysis capable of handling large populations. Results: In this study we describe the development of a robust method for the accurate extraction and measurement of spike and grain morphometric parameters from images acquired by X-ray micro-computed tomography (?CT). The image analysis pipeline developed automatically identiies plant material of interest in ?CT images, performs image analysis, and extracts morphometric data. As a proof of principle, this integrated methodology was used to analyse the spikes from a population of wheat plants subjected to high temperatures under two diferent water regimes. Temperature has a negative efect on spike height and grain number with the middle of the spike being the most afected region. The data also conirmed that increased grain volume was correlated with the decrease in grain number under mild stress. Conclusions: Being able to quickly measure plant phenotypes in a non-destructive manner is crucial to advance our understanding of gene function and the efects of the environment. We report on the development of an image analysis pipeline capable of accurately and reliably extracting spike and grain traits from crops without the loss of positional information. This methodology was applied to the analysis of wheat spikes can be readily applied to other economically important crop species.publishersversionPeer reviewe

    Functional mapping of quantitative trait loci (QTLs) associated with plant performance in a wheat MAGIC mapping population

    Get PDF
    In crop genetic studies, the mapping of longitudinal data describing the spatio-temporal nature of agronomic traits can elucidate the factors influencing their formation and development. Here, we combine the mapping power and precision of a MAGIC wheat population with robust computational methods to track the spatio- temporal dynamics of traits associated with wheat performance. NIAB MAGIC lines were phenotyped throughout their lifecycle under smart house conditions. Growth models were fitted to the data describing growth trajectories of plant area, height, water use and senescence and fitted parameters were mapped as quantitative traits. Trait data from single time points were also mapped to determine when and how markers became and ceased to be significant. Assessment of temporal dynamics allowed the identification of marker-trait associations and tracking of trait development against the genetic contribution of key markers. We establish a data-driven approach for understanding complex agronomic traits and accelerate research in plant breeding

    The impact of interventions to prevent obesity or improve obesity related behaviours in children (0-5 years) from socioeconomically disadvantaged and/or indigenous families: a systematic review

    Get PDF
    BackgroundChildren from disadvantaged families including those from low socioeconomic backgrounds and Indigenous families have higher rates of obesity, making early intervention a priority. The aim of this study was to systematically review the literature to examine the effectiveness of interventions to prevent obesity or improve obesity related behaviours in children 0-5 years from socioeconomically disadvantaged or Indigenous families.MethodsSearches of major electronic databases identified articles published from 1993–2013 targeting feeding practices, anthropometric, diet, activity or sedentary behaviour outcomes. This was supplemented with snowballing from existing reviews and primary studies. Data extraction was undertaken by one author and cross checked by another. Quality assessments included both internal and external validity.ResultsThirty-two studies were identified, with only two (both low quality) in Indigenous groups. Fourteen studies had a primary aim to prevent obesity. Mean differences between intervention and control groups ranged from -0.29 kg/m2 to -0.54 kg/m2 for body mass index (BMI) and -2.9 to -25.6% for the prevalence of overweight/obesity. Interventions initiated in infancy (under two years) had a positive impact on obesity related behaviours (e.g. diet quality) but few measured the longer-term impact on healthy weight gain. Findings amongst pre-schoolers (3–5 years) were mixed, with the more successful interventions requiring high levels of parental engagement, use of behaviour change techniques, a focus on skill building and links to community resources. Less than 10% of studies were high quality. Future studies should focus on improving study quality, including follow-up of longer-term anthropometric outcomes, assessments of cost effectiveness, acceptability in target populations and potential for implementation in routine service delivery.ConclusionThere is an urgent need for further research on effective obesity prevention interventions for Indigenous children. The findings from the growing body of intervention research focusing on obesity prevention amongst young children from socioeconomically disadvantaged families suggest intervention effects are modest but promising. Further high quality studies with longer term follow up are required

    Preventing obesity in infants: the growing healthy feasibility trial protocol

    Full text link
    INTRODUCTION: Early childhood is an important period for establishing behaviours that will affect weight gain and health across the life course. Early feeding choices, including breast and/or formula, timing of introduction of solids, physical activity and electronic media use among infants and young children are considered likely determinants of childhood obesity. Parents play a primary role in shaping these behaviours through parental modelling, feeding styles, and the food and physical activity environments provided. Children from low socio-economic backgrounds have higher rates of obesity, making early intervention particularly important. However, such families are often more difficult to reach and may be less likely to participate in traditional programs that support healthy behaviours. Parents across all socio-demographic groups frequently access primary health care (PHC) services, including nurses in community health services and general medical practices, providing unparalleled opportunity for engagement to influence family behaviours. One emerging and promising area that might maximise engagement at a low cost is the provision of support for healthy parenting through electronic media such as the Internet or smart phones. The Growing healthy study explores the feasibility of delivering such support via primary health care services. METHODS: This paper describes the Growing healthy study, a non-randomised quasi experimental study examining the feasibility of an intervention delivered via a smartphone app (or website) for parents living in socioeconomically disadvantaged areas, for promoting infant feeding and parenting behaviours that promote healthy rather than excessive weight gain. Participants will be recruited via their primary health care practitioner and followed until their infant is 9 months old. Data will be collected via web-based questionnaires and the data collected inherently by the app itself. ETHICS AND DISSEMINATION: This study received approval from the University of Technology Sydney Ethics committee and will be disseminated via peer-reviewed publications and conference presentations

    INHIBITING CSF1R ALLEVIATES CEREBROVASCULAR WHITE MATTER DISEASE AND COGNITIVE IMPAIRMENT

    Get PDF
    White matter abnormalities, related to poor cerebral perfusion, are a core feature of small vessel cerebrovascular disease, and critical determinants of vascular cognitive impairment and dementia. Despite this importance there is a lack of treatment options. Proliferation of microglia producing an expanded, reactive population and associated neuroinflammatory alterations have been implicated in the onset and progression of cerebrovascular white matter disease, in patients and in animal models, suggesting that targeting microglial proliferation may exert protection. Colony-stimulating factor-1 receptor (CSF1R) is a key regulator of microglial proliferation. We found that the expression of CSF1R/Csf1r and other markers indicative of increased microglial abundance are significantly elevated in damaged white matter in human cerebrovascular disease and in a clinically relevant mouse model of chronic cerebral hypoperfusion and vascular cognitive impairment. Using the mouse model, we investigated long-term pharmacological CSF1R inhibition, via GW2580, and demonstrated that the expansion of microglial numbers in chronic hypoperfused white matter is prevented. Transcriptomic analysis of hypoperfused white matter tissue showed enrichment of microglial and inflammatory gene sets, including phagocytic genes that were the predominant expression modules modified by CSF1R inhibition. Further, CSF1R inhibition attenuated hypoperfusion-induced white matter pathology and rescued spatial learning impairments and to a lesser extent cognitive flexibility. Overall, this work suggests that inhibition of CSF1R and microglial proliferation mediates protection against chronic cerebrovascular white matter pathology and cognitive deficits. Our study nominates CSF1R as a target for the treatment of vascular cognitive disorders with broader implications for treatment of other chronic white matter diseases.<br/

    Microglia regulate myelin growth and integrity in the central nervous system

    Get PDF
    Myelin is required for the function of neuronal axons in the central nervous system, but the mechanisms that support myelin health are unclear. Although macrophages in the central nervous system have been implicated in myelin health(1), it is unknown which macrophage populations are involved and which aspects they influence. Here we show that resident microglia are crucial for the maintenance of myelin health in adulthood in both mice and humans. We demonstrate that microglia are dispensable for developmental myelin ensheathment. However, they are required for subsequent regulation of myelin growth and associated cognitive function, and for preservation of myelin integrity by preventing its degeneration. We show that loss of myelin health due to the absence of microglia is associated with the appearance of a myelinating oligodendrocyte state with altered lipid metabolism. Moreover, this mechanism is regulated through disruption of the TGFβ1–TGFβR1 axis. Our findings highlight microglia as promising therapeutic targets for conditions in which myelin growth and integrity are dysregulated, such as in ageing and neurodegenerative disease(2,3)

    Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    Get PDF
    The CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy of s=1.96\sqrt s =1.96 TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is AFBttˉ=0.128±0.025A_{\mathrm{FB}}^{t\bar{t}} = 0.128 \pm 0.025. The combined inclusive and differential asymmetries are consistent with recent standard model predictions

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (μ̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ¯ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ¯ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),μ̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| &lt; 0.03 at 95% confidence level. [Figure not available: see fulltext.
    corecore