75 research outputs found

    Microbial diversities (16S and 18S rRNA gene pyrosequencing) and environmental pathogens within drinking water biofilms grown on the common premise plumbing materials unplasticized polyvinylchloride and copper

    Get PDF
    Drinking water (DW) biofilm communities influence the survival of opportunistic pathogens, yet knowledge about the microbial composition of DW biofilms developed on common in-premise plumbing material is limited. Utilizing 16S and 18S rRNA gene pyrosequencing, this study characterized the microbial community structure within DW biofilms established on unplasticized polyvinyl chloride (uPVC) and copper (Cu) surfaces and the impact of introducing Legionella pneumophila (Lp) and Acanthamoeba polyphaga. Mature (\u3e 1 year old) biofilms were developed before inoculation with sterilized DW (control, Con), Lp, or Lp and A. polyphaga (LpAp). Comparison of uPVC and Cu biofilms indicated significant differences between bacterial (P = 0.001) and eukaryotic (P \u3c 0.01) members attributable to the unique presence of several family taxa: Burkholderiaceae, Characeae, Epistylidae, Goniomonadaceae, Paramoebidae, Plasmodiophoridae, Plectidae, Sphenomonadidae, and Toxariaceae within uPVC biofilms; and Enterobacteriaceae, Erythrobacteraceae, Methylophilaceae, Acanthamoebidae, and Chlamydomonadaceae within Cu biofilms. Introduction of Lp alone or with A. polyphaga had no effect on bacterial community profiles (P \u3e 0.05) but did affect eukaryotic members (uPVC, P \u3c 0.01; Cu, P = 0.001). Thus, established DW biofilms host complex communities that may vary based on substratum matrix and maintain consistent bacterial communities despite introduction of Lp, an environmental pathogen

    Molecular Detection of \u3ci\u3eCampylobacter\u3c/i\u3e spp. and Fecal Indicator Bacteria during the Northern Migration of Sandhill Cranes (\u3ci\u3eGrus canadensis\u3c/i\u3e) at the Central Platte River

    Get PDF
    The risk to human health of the annual sandhill crane (Grus canadensis) migration through Nebraska, which is thought to be a major source of fecal pollution of the central Platte River, is unknown. To better understand potential risks, the presence of Campylobacter species and three fecal indicator bacterial groups (Enterococcus spp., Escherichia coli, and Bacteroidetes) was assayed by PCR from crane excreta and water samples collected during their stopover at the Platte River, Nebraska, in 2010. Genus-specific PCR assays and sequence analyses identified Campylobacter jejuni as the predominant Campylobacter species in sandhill crane excreta. Campylobacter spp. were detected in 48% of crane excreta, 24% of water samples, and 11% of sediment samples. The estimated densities of Enterococcus spp. were highest in excreta samples (mean, 4.6 x108 cell equivalents [CE]/g), while water samples contained higher levels of Bacteroidetes (mean, 5.1 x 105 CE/100 ml). Enterococcus spp., E. coli, and Campylobacter spp. were significantly increased in river water and sediments during the crane migration period, with Enterococcus sp. densities (~3.3 x 105 CE/g) 2 to 4 orders of magnitude higher than those of Bacteroidetes (4.9 x 103 CE/g), E. coli (2.2 x 103 CE/ g), and Campylobacter spp. (37 CE/g). Sequencing data for the 16S rRNA gene and Campylobacter species-specific PCR assays indicated that C. jejuni was the major Campylobacter species present in water, sediments, and crane excreta. Overall, migration appeared to result in a significant, but temporary, change in water quality in spring, when there may be a C. jejuni health hazard associated with water and crops visited by the migrating birds

    Life Cycle Assessment of Community-Based Sewer Mining : Integrated Heat Recovery and Fit-For-Purpose Water Reuse

    Get PDF
    Municipal sewage contains significant embedded resources in the form of chemical and thermal energy. Recent developments in sustainable technology have pushed for the integration of resource recovery from household wastewater to achieve net zero energy consumption and carbon-neutral communities. Sewage heat recovery and fit-for-purpose water reuse are options to optimize the resource recovery potential of municipal wastewater. This study presents a comparative life cycle assessment (LCA) focused on global warming potential (GWP), eutrophication potential (EUP), and human health carcinogenic potential (HHCP) of an integrated sewage heat recovery and water reuse system for a hypothetical community of 30,000 people. Conventional space and water heating components generally demonstrated the highest GWP contribution between the different system components evaluated. Sewage-heat-recovery-based district heating offered better environmental performance overall. Lower impact contributions were demonstrated by scenarios with a membrane bioreactor (MBR) and chlorination prior to water reuse applications compared to scenarios that use more traditional water and wastewater treatment technologies and discharge. The LCA findings show that integrating MBR wastewater treatment and water reuse into a district heating schema could provide additional environmental savings at a community scale.Peer reviewe

    Human Health Risk Assessment (HHRA) for environmental development and transfer of antibiotic resistance

    Get PDF
    Background: Only recently has the environment been clearly implicated in the risk of antibiotic resistance to clinical outcome, but to date there have been few documented approaches to formally assess these risks. Objective: We examined possible approach

    Meeting Report: Knowledge and Gaps in Developing Microbial Criteria for Inland Recreational Waters

    Get PDF
    The U.S. Environmental Protection Agency (EPA) has committed to issuing in 2012 new or revised criteria designed to protect the health of those who use surface waters for recreation. For this purpose, the U.S. EPA has been conducting epidemiologic studies to establish relationships between microbial measures of water quality and adverse health outcomes among swimmers. New methods for testing water quality that would provide same-day results will likely be elements of the new criteria. Although the epidemiologic studies upon which the criteria will be based were conducted at Great Lakes and marine beaches, the new water quality criteria may be extended to inland waters (IWs). Similarities and important differences between coastal waters (CWs) and IWs that should be considered when developing criteria for IWs were the focus of an expert workshop. Here, we summarize the state of knowledge and research needed to base IWs microbial criteria on sound science. Two key differences between CWs and IWs are the sources of indicator bacteria, which may modify the relationship between indicator microbes and health risk, and the relationship between indicators and pathogens, which also may vary within IWs. Monitoring using rapid molecular methods will require the standardization and simplification of analytical methods, as well as greater clarity about their interpretation. Research needs for the short term and longer term are described

    An Environmental Science and Engineering Framework for Combating Antimicrobial Resistance

    Get PDF
    On June 20, 2017, members of the environmental engineering and science (EES) community convened at the Association of Environmental Engineering and Science Professors (AEESP) Biennial Conference for a workshop on antimicrobial resistance. With over 80 registered participants, discussion groups focused on the following topics: risk assessment, monitoring, wastewater treatment, agricultural systems, and synergies. In this study, we summarize the consensus among the workshop participants regarding the role of the EES community in understanding and mitigating the spread of antibiotic resistance via environmental pathways. Environmental scientists and engineers offer a unique and interdisciplinary perspective and expertise needed for engaging with other disciplines such as medicine, agriculture, and public health to effectively address important knowledge gaps with respect to the linkages between human activities, impacts to the environment, and human health risks. Recommendations that propose priorities for research within the EES community, as well as areas where interdisciplinary perspectives are needed, are highlighted. In particular, risk modeling and assessment, monitoring, and mass balance modeling can aid in the identification of “hot spots” for antibiotic resistance evolution and dissemination, and can help identify effective targets for mitigation. Such information will be essential for the development of an informed and effective policy aimed at preserving and protecting the efficacy of antibiotics for future generations

    Molecular detection of Campylobacter spp. and fecal indicator bacteria during the northern migration of sandhill cranes (Grus canadensis) at the central Platte River

    Get PDF
    The risk to human health of the annual sandhill crane (Grus canadensis) migration through Nebraska, which is thought to be a major source of fecal pollution of the central Platte River, is unknown. To better understand potential risks, the presence of Campylobacter species and three fecal indicator bacterial groups (Enterococcus spp., Escherichia coli, and Bacteroidetes) was assayed by PCR from crane excreta and water samples collected during their stopover at the Platte River, Nebraska, in 2010. Genus-specific PCR assays and sequence analyses identified Campylobacter jejuni as the predominant Campylobacter species in sandhill crane excreta. Campylobacter spp. were detected in 48% of crane excreta, 24% of water samples, and 11% of sediment samples. The estimated densities of Enterococcus spp. were highest in excreta samples (mean, 4.6 x 10^8 cell equivalents [CE]/g), while water samples contained higher levels of Bacteroidetes (mean, 5.1 x 10^5 CE/100 ml). Enterococcus spp., E. coli, and Campylobacter spp. were significantly increased in river water and sediments during the crane migration period, with Enterococcus sp. densities (~3.3 x 10^5 CE/g) 2 to 4 orders of magnitude higher than those of Bacteroidetes (4.9 x 10^3 CE/g), E. coli (2.2 x 10^3 CE/g), and Campylobacter spp. (37 CE/g). Sequencing data for the 16S rRNA gene and Campylobacter species-specific PCR assays indicated that C. jejuni was the major Campylobacter species present in water, sediments, and crane excreta. Overall, migration appeared to result in a significant, but temporary, change in water quality in spring, when there may be a C. jejuni health hazard associated with water and crops visited by the migrating birds.Peer reviewedBiosystems and Agricultural Engineerin

    Differential Bacterial Predation by Free-Living Amoebae May Result in Blooms of <i>Legionella</i> in Drinking Water Systems

    No full text
    Intracellular growth of pathogenic Legionella in free-living amoebae (FLA) results in the critical concentrations that are problematic in engineered water systems (EWS). However, being amoeba-resistant bacteria (ARB), how Legionella spp. becomes internalized within FLA is still poorly understood. Using fluorescent microscopy, we investigated in real-time the preferential feeding behavior of three water-related FLA species, Willaertia magna, Acanthamoeba polyphaga, and Vermamoeba vermiformis regarding Legionella pneumophila and two Escherichia coli strains. Although all the studied FLA species supported intracellular growth of L. pneumophila, they avoided this bacterium to a certain degree in the presence of E. coli and mostly fed on it when the preferred bacterial food-sources were limited. Moreover, once L. pneumophila were intracellular, it inhibited digestion of co-occurring E. coli within the same trophozoites. Altogether, based on FLA–bacteria interactions and the shifts in microbial population dynamics, we propose that FLA’s feeding preference leads to an initial growth of FLA and depletion of prey bacteria, thus increases the relative abundance of Legionella and creates a “forced-feeding” condition facilitating the internalization of Legionella into FLA to initiate the cycles of intracellular multiplication. These findings imply that monitoring of FLA levels in EWS could be useful in predicting possible imminent high occurrence of Legionella
    • …
    corecore