51 research outputs found

    P300 and neuropsychological assessment in mild cognitive impairment and Alzheimer dementia

    Get PDF
    Only a small proportion of individuals with Mild Cognitive Impairment (MCI) will convert to dementia. Methods currently available to identify risk for conversion do not combine enough sensitivity and specificity, which is even more problematic in low-educated populations. Current guidelines suggest the use of combined markers for dementia to enhance the prediction accuracy of assessment methods. The present study adhered to this proposal and investigated the sensitivity and specificity of the electrophysiological component P300 and standard neuropsychological tests to assess patients with Alzheimer’s disease (AD) and MCI recruited from a low-income country. The neuropsychological battery comprised tests of memory, attention, language, praxis and executive functions. The P300 was recorded using a classical visual odd-ball paradigm. Three variables were found to achieve sensitivity and specificity values above 80% (Immediate and Delayed recall of word list – CERAD – and the latency of P300) for both MCI and AD. When they entered the model together (i.e., combined approach) the sensitivity for MCI increased to 96% and the specificity remained high (80%). Our preliminary findings suggest that the combined use of sensitive neuropsychological tasks and the analysis of the P300 may offer a very useful method for the preclinical assessment of AD, particularly in populations with low socioeconomic and educational levels. Our results provide a platform and justification to employ more resources to convert P300 and related parameters into a biological marker for AD

    A systems biology approach to the evolution of plant-virus interactions

    Get PDF
    [EN] Omic approaches to the analysis of plant-virus interactions are becoming increasingly popular. These types of data, in combination with models of interaction networks, will aid in revealing not only host components that are important for the virus life cycle, but also general patterns about the way in which different viruses manipulate host regulation of gene expression for their own benefit and possible mechanisms by which viruses evade host defenses. Here, we review studies identifying host genes regulated by viruses and discuss how these genes integrate in host regulatory and interaction networks, with a particular focus on the physical properties of these networks. © 2011 Elsevier Ltd.This work was supported by grants from the Spanish MICINN (BFU2009-06993) and Generalitat Valenciana (PROMETEO2010/019). GR is supported by a fellowship from Generalitat Valenciana (BFPI2007-160) and JC by a contract from MICINN (Grant TIN2006-12860). We thank Jose-Antonio Dares and Gustavo G. Gomez for comments.Elena Fito, SF.; Carrera, J.; Rodrigo, J. (2011). A systems biology approach to the evolution of plant-virus interactions. Current Opinion in Plant Biology. 14(4):372-377. https://doi.org/10.1016/j.pbi.2011.03.013S37237714

    Diversification and Specialization of Plant RBR Ubiquitin Ligases

    Get PDF
    Background: RBR ubiquitin ligases are components of the ubiquitin-proteasome system present in all eukaryotes. They are characterized by having the RBR (RING – IBR – RING) supradomain. In this study, the patterns of emergence of RBR genes in plants are described. Methodology/Principal Findings: Phylogenetic and structural data confirm that just four RBR subfamilies (Ariadne, ARA54, Plant I/Helicase and Plant II) exist in viridiplantae. All of them originated before the split that separated green algae from the rest of plants. Multiple genes of two of these subfamilies (Ariadne and Plant II) appeared in early plant evolution. It is deduced that the common ancestor of all plants contained at least five RBR genes and the available data suggest that this number has been increasing slowly along streptophyta evolution, although losses, especially of Helicase RBR genes, have also occurred in several lineages. Some higher plants (e. g. Arabidopsis thaliana, Oryza sativa) contain a very large number of RBR genes and many of them were recently generated by tandem duplications. Microarray data indicate that most of these new genes have low-level and sometimes specific expression patterns. On the contrary, and as occurs in animals, a small set of older genes are broadly expressed at higher levels. Conclusions/Significance: The available data suggests that the dynamics of appearance and conservation of RBR genes is quite different in plants from what has been described in animals. In animals, an abrupt emergence of many structurall

    Ongoing geographical spread of Tomato yellow leaf curl virus

    Get PDF
    Tomato yellow leaf curl virus (TYLCV) seriously impacts tomato production throughout tropical and sub-tropical regions of the world. It has a broad geographical distribution and continues to spread to new regions in the Indian and Pacific Oceans including Australia, New Caledonia and Mauritius. We undertook a temporally-scaled, phylogeographic analysis of all publicly available, full genome sequences of TYLCV, together with 70 new genome sequences from Australia, Iran and Mauritius. This revealed that whereas epidemics in Australia and China likely originated through multiple independent viral introductions from the East-Asian region around Japan and Korea, the New Caledonian epidemic was seeded by a variant from the Western Mediterranean region and the Mauritian epidemic by a variant from the neighbouring island of Reunion. Finally, we show that inter-continental scale movements of TYLCV to East Asia have, at least temporarily, ceased, whereas long-distance movements to the Americas and Australia are probably still ongoing

    A meta-analysis reveals the commonalities and differences in Arabidopsis thaliana response to different viral pathogens

    Get PDF
    Understanding the mechanisms by which plants trigger host defenses in response to viruses has been a challenging problem owing to the multiplicity of factors and complexity of interactions involved. The advent of genomic techniques, however, has opened the possibility to grasp a global picture of the interaction. Here, we used Arabidopsis thaliana to identify and compare genes that are differentially regulated upon infection with seven distinct (+)ssRNA and one ssDNA plant viruses. In the first approach, we established lists of genes differentially affected by each virus and compared their involvement in biological functions and metabolic processes. We found that phylogenetically related viruses significantly alter the expression of similar genes and that viruses naturally infecting Brassicaceae display a greater overlap in the plant response. In the second approach, virus-regulated genes were contextualized using models of transcriptional and protein-protein interaction networks of A. thaliana. Our results confirm that host cells undergo significant reprogramming of their transcriptome during infection, which is possibly a central requirement for the mounting of host defenses. We uncovered a general mode of action in which perturbations preferentially affect genes that are highly connected, central and organized in modules. © 2012 Rodrigo et al.This work was supported by the Spanish Ministerio de Ciencia e Innovacion (MICINN) grants BFU2009-06993 (S. F. E.) and BIO2006-13107 (C. L.) and by Generalitat Valenciana grant PROMETEO2010/016 (S. F. E.). G. R. is supported by a graduate fellowship from the Generalitat Valenciana (BFPI2007-160) and J.C. by a contract from MICINN grant TIN2006-12860. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Rodrigo Tarrega, G.; Carrera Montesinos, J.; Ruiz-Ferrer, V.; Del Toro, F.; Llave, C.; Voinnet, O.; Elena Fito, SF. (2012). A meta-analysis reveals the commonalities and differences in Arabidopsis thaliana response to different viral pathogens. PLoS ONE. 7(7):40526-40526. https://doi.org/10.1371/journal.pone.0040526S405264052677Peng, X., Chan, E. Y., Li, Y., Diamond, D. L., Korth, M. J., & Katze, M. G. (2009). Virus–host interactions: from systems biology to translational research. Current Opinion in Microbiology, 12(4), 432-438. doi:10.1016/j.mib.2009.06.003Dodds, P. N., & Rathjen, J. P. (2010). Plant immunity: towards an integrated view of plant–pathogen interactions. Nature Reviews Genetics, 11(8), 539-548. doi:10.1038/nrg2812Maule, A., Leh, V., & Lederer, C. (2002). The dialogue between viruses and hosts in compatible interactions. Current Opinion in Plant Biology, 5(4), 279-284. doi:10.1016/s1369-5266(02)00272-8Whitham, S. A., Quan, S., Chang, H.-S., Cooper, B., Estes, B., Zhu, T., … Hou, Y.-M. (2003). Diverse RNA viruses elicit the expression of common sets of genes in susceptibleArabidopsis thalianaplants. The Plant Journal, 33(2), 271-283. doi:10.1046/j.1365-313x.2003.01625.xBailer, S., & Haas, J. (2009). Connecting viral with cellular interactomes. Current Opinion in Microbiology, 12(4), 453-459. doi:10.1016/j.mib.2009.06.004Whitham, S. A., Yang, C., & Goodin, M. M. (2006). Global Impact: Elucidating Plant Responses to Viral Infection. Molecular Plant-Microbe Interactions, 19(11), 1207-1215. doi:10.1094/mpmi-19-1207MacPherson, J. I., Dickerson, J. E., Pinney, J. W., & Robertson, D. L. (2010). Patterns of HIV-1 Protein Interaction Identify Perturbed Host-Cellular Subsystems. PLoS Computational Biology, 6(7), e1000863. doi:10.1371/journal.pcbi.1000863Jenner, R. G., & Young, R. A. (2005). Insights into host responses against pathogens from transcriptional profiling. Nature Reviews Microbiology, 3(4), 281-294. doi:10.1038/nrmicro1126Andeweg, A. C., Haagmans, B. L., & Osterhaus, A. D. (2008). Virogenomics: the virus–host interaction revisited. Current Opinion in Microbiology, 11(5), 461-466. doi:10.1016/j.mib.2008.09.010Elena, S. F., Carrera, J., & Rodrigo, G. (2011). A systems biology approach to the evolution of plant–virus interactions. Current Opinion in Plant Biology, 14(4), 372-377. doi:10.1016/j.pbi.2011.03.013Tan, S.-L., Ganji, G., Paeper, B., Proll, S., & Katze, M. G. (2007). Systems biology and the host response to viral infection. Nature Biotechnology, 25(12), 1383-1389. doi:10.1038/nbt1207-1383De la Fuente, A. (2010). From ‘differential expression’ to ‘differential networking’ – identification of dysfunctional regulatory networks in diseases. Trends in Genetics, 26(7), 326-333. doi:10.1016/j.tig.2010.05.001Albert, R. (2005). Scale-free networks in cell biology. Journal of Cell Science, 118(21), 4947-4957. doi:10.1242/jcs.02714Yu, H., Braun, P., Yildirim, M. A., Lemmens, I., Venkatesan, K., Sahalie, J., … Vidal, M. (2008). High-Quality Binary Protein Interaction Map of the Yeast Interactome Network. Science, 322(5898), 104-110. doi:10.1126/science.1158684Barabási, A.-L., & Oltvai, Z. N. (2004). Network biology: understanding the cell’s functional organization. Nature Reviews Genetics, 5(2), 101-113. doi:10.1038/nrg1272Albert, R., Jeong, H., & Barabási, A.-L. (2000). Error and attack tolerance of complex networks. Nature, 406(6794), 378-382. doi:10.1038/35019019Mukhtar, M. S., Carvunis, A.-R., Dreze, M., Epple, P., Steinbrenner, J., … Moore, J. (2011). Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network. Science, 333(6042), 596-601. doi:10.1126/science.1203659Calderwood, M. A., Venkatesan, K., Xing, L., Chase, M. R., Vazquez, A., Holthaus, A. M., … Johannsen, E. (2007). Epstein-Barr virus and virus human protein interaction maps. Proceedings of the National Academy of Sciences, 104(18), 7606-7611. doi:10.1073/pnas.0702332104De Chassey, B., Navratil, V., Tafforeau, L., Hiet, M. S., Aublin‐Gex, A., Agaugué, S., … Lotteau, V. (2008). Hepatitis C virus infection protein network. Molecular Systems Biology, 4(1), 230. doi:10.1038/msb.2008.66Shapira, S. D., Gat-Viks, I., Shum, B. O. V., Dricot, A., de Grace, M. M., Wu, L., … Hacohen, N. (2009). A Physical and Regulatory Map of Host-Influenza Interactions Reveals Pathways in H1N1 Infection. Cell, 139(7), 1255-1267. doi:10.1016/j.cell.2009.12.018Dyer, M. D., Murali, T. M., & Sobral, B. W. (2008). The Landscape of Human Proteins Interacting with Viruses and Other Pathogens. PLoS Pathogens, 4(2), e32. doi:10.1371/journal.ppat.0040032Golem, S., & Culver, J. N. (2003). Tobacco mosaic virusInduced Alterations in the Gene Expression Profile ofArabidopsis thaliana. Molecular Plant-Microbe Interactions, 16(8), 681-688. doi:10.1094/mpmi.2003.16.8.681Espinoza, C., Medina, C., Somerville, S., & Arce-Johnson, P. (2007). Senescence-associated genes induced during compatible viral interactions with grapevine and Arabidopsis. Journal of Experimental Botany, 58(12), 3197-3212. doi:10.1093/jxb/erm165Yang, C., Guo, R., Jie, F., Nettleton, D., Peng, J., Carr, T., … Whitham, S. A. (2007). Spatial Analysis ofArabidopsis thalianaGene Expression in Response toTurnip mosaic virusInfection. Molecular Plant-Microbe Interactions, 20(4), 358-370. doi:10.1094/mpmi-20-4-0358Agudelo-Romero, P., Carbonell, P., de la Iglesia, F., Carrera, J., Rodrigo, G., Jaramillo, A., … Elena, S. F. (2008). Changes in the gene expression profile of Arabidopsis thaliana after infection with Tobacco etch virus. Virology Journal, 5(1), 92. doi:10.1186/1743-422x-5-92Agudelo-Romero, P., Carbonell, P., Perez-Amador, M. A., & Elena, S. F. (2008). Virus Adaptation by Manipulation of Host’s Gene Expression. PLoS ONE, 3(6), e2397. doi:10.1371/journal.pone.0002397Ascencio-Ibáñez, J. T., Sozzani, R., Lee, T.-J., Chu, T.-M., Wolfinger, R. D., Cella, R., & Hanley-Bowdoin, L. (2008). Global Analysis of Arabidopsis Gene Expression Uncovers a Complex Array of Changes Impacting Pathogen Response and Cell Cycle during Geminivirus Infection. Plant Physiology, 148(1), 436-454. doi:10.1104/pp.108.121038Babu, M., Griffiths, J. S., Huang, T.-S., & Wang, A. (2008). Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to Plum pox virus infection. BMC Genomics, 9(1), 325. doi:10.1186/1471-2164-9-325De Vienne, D. M., Giraud, T., & Martin, O. C. (2007). A congruence index for testing topological similarity between trees. Bioinformatics, 23(23), 3119-3124. doi:10.1093/bioinformatics/btm500Wise, R. P., Moscou, M. J., Bogdanove, A. J., & Whitham, S. A. (2007). Transcript Profiling in Host–Pathogen Interactions. Annual Review of Phytopathology, 45(1), 329-369. doi:10.1146/annurev.phyto.45.011107.143944Handford, M. G., & Carr, J. P. (2007). A defect in carbohydrate metabolism ameliorates symptom severity in virus-infected Arabidopsis thaliana. Journal of General Virology, 88(1), 337-341. doi:10.1099/vir.0.82376-0Hou, B., Lim, E.-K., Higgins, G. S., & Bowles, D. J. (2004). N-Glucosylation of Cytokinins by Glycosyltransferases ofArabidopsis thaliana. Journal of Biological Chemistry, 279(46), 47822-47832. doi:10.1074/jbc.m409569200Schwender, J., Goffman, F., Ohlrogge, J. B., & Shachar-Hill, Y. (2004). Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature, 432(7018), 779-782. doi:10.1038/nature03145Pagán, I., Alonso-Blanco, C., & García-Arenal, F. (2008). Host Responses in Life-History Traits and Tolerance to Virus Infection in Arabidopsis thaliana. PLoS Pathogens, 4(8), e1000124. doi:10.1371/journal.ppat.1000124Carrera, J., Rodrigo, G., Jaramillo, A., & Elena, S. F. (2009). Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions. Genome Biology, 10(9), R96. doi:10.1186/gb-2009-10-9-r96Geisler-Lee, J., O’Toole, N., Ammar, R., Provart, N. J., Millar, A. H., & Geisler, M. (2007). A Predicted Interactome for Arabidopsis. Plant Physiology, 145(2), 317-329. doi:10.1104/pp.107.103465Ma, S., Gong, Q., & Bohnert, H. J. (2007). An Arabidopsis gene network based on the graphical Gaussian model. Genome Research, 17(11), 1614-1625. doi:10.1101/gr.6911207Yamada, T., & Bork, P. (2009). Evolution of biomolecular networks — lessons from metabolic and protein interactions. Nature Reviews Molecular Cell Biology, 10(11), 791-803. doi:10.1038/nrm2787Humphries, M. D., & Gurney, K. (2008). Network ‘Small-World-Ness’: A Quantitative Method for Determining Canonical Network Equivalence. PLoS ONE, 3(4), e0002051. doi:10.1371/journal.pone.0002051Stumpf, M. P. H., & Ingram, P. J. (2005). Probability models for degree distributions of protein interaction networks. Europhysics Letters (EPL), 71(1), 152-158. doi:10.1209/epl/i2004-10531-8Khanin, R., & Wit, E. (2006). How Scale-Free Are Biological Networks. Journal of Computational Biology, 13(3), 810-818. doi:10.1089/cmb.2006.13.810Daudin, J.-J., Picard, F., & Robin, S. (2007). A mixture model for random graphs. Statistics and Computing, 18(2), 173-183. doi:10.1007/s11222-007-9046-7Uetz, P. (2006). Herpesviral Protein Networks and Their Interaction with the Human Proteome. Science, 311(5758), 239-242. doi:10.1126/science.1116804Choi, I.-R., Stenger, D. C., & French, R. (2000). Multiple Interactions among Proteins Encoded by the Mite-Transmitted Wheat Streak Mosaic Tritimovirus. Virology, 267(2), 185-198. doi:10.1006/viro.1999.0117Guo, D., Saarma, M., Rajamäki, M.-L., & Valkonen, J. P. T. (2001). Towards a protein interaction map of potyviruses: protein interaction matrixes of two potyviruses based on the yeast two-hybrid system. Journal of General Virology, 82(4), 935-939. doi:10.1099/0022-1317-82-4-935Lin, L., Shi, Y., Luo, Z., Lu, Y., Zheng, H., Yan, F., … Wu, Y. (2009). Protein–protein interactions in two potyviruses using the yeast two-hybrid system. Virus Research, 142(1-2), 36-40. doi:10.1016/j.virusres.2009.01.006Shen, W., Wang, M., Yan, P., Gao, L., & Zhou, P. (2010). Protein interaction matrix of Papaya ringspot virus type P based on a yeast two-hybrid system. Acta Virologica, 54(1), 49-54. doi:10.4149/av_2010_01_49Redner, S. (2008). Teasing out the missing links. Nature, 453(7191), 47-48. doi:10.1038/453047aIrizarry, R. A. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4(2), 249-264. doi:10.1093/biostatistics/4.2.249Smyth, G. K. (2004). Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments. Statistical Applications in Genetics and Molecular Biology, 3(1), 1-25. doi:10.2202/1544-6115.1027Allemeersch, J., Durinck, S., Vanderhaeghen, R., Alard, P., Maes, R., Seeuws, K., … Kuiper, M. T. R. (2005). Benchmarking the CATMA Microarray. A Novel Tool forArabidopsis Transcriptome Analysis. Plant Physiology, 137(2), 588-601. doi:10.1104/pp.104.051300Cleveland, W. S. (1979). Robust Locally Weighted Regression and Smoothing Scatterplots. Journal of the American Statistical Association, 74(368), 829-836. doi:10.1080/01621459.1979.10481038Tarraga, J., Medina, I., Carbonell, J., Huerta-Cepas, J., Minguez, P., Alloza, E., … Dopazo, J. (2008). GEPAS, a web-based tool for microarray data analysis and interpretation. Nucleic Acids Research, 36(Web Server), W308-W314. doi:10.1093/nar/gkn303Al-Shahrour, F., Minguez, P., Vaquerizas, J. M., Conde, L., & Dopazo, J. (2005). BABELOMICS: a suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments. Nucleic Acids Research, 33(Web Server), W460-W464. doi:10.1093/nar/gki456Al-Shahrour, F., Minguez, P., Tárraga, J., Medina, I., Alloza, E., Montaner, D., & Dopazo, J. (2007). FatiGO +: a functional profiling tool for genomic data. Integration of functional annotation, regulatory motifs and interaction data with microarray experiments. Nucleic Acids Research, 35(suppl_2), W91-W96. doi:10.1093/nar/gkm260Mueller, L. A., Zhang, P., & Rhee, S. Y. (2003). AraCyc: A Biochemical Pathway Database for Arabidopsis. Plant Physiology, 132(2), 453-460. doi:10.1104/pp.102.017236Navratil, V., de Chassey, B., Combe, C., & Lotteau, V. (2011). When the human viral infectome and diseasome networks collide: towards a systems biology platform for the aetiology of human diseases. BMC Systems Biology, 5(1), 13. doi:10.1186/1752-0509-5-13Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379-423. doi:10.1002/j.1538-7305.1948.tb01338.

    Biotechnological approaches for plant viruses resistance: from general to the modern RNA silencing pathway

    Full text link

    Global Analysis of Arabidopsis Gene Expression Uncovers a Complex Array of Changes Impacting Pathogen Response and Cell Cycle during Geminivirus Infection1[W][OA]

    No full text
    Geminiviruses are small DNA viruses that use plant replication machinery to amplify their genomes. Microarray analysis of the Arabidopsis (Arabidopsis thaliana) transcriptome in response to cabbage leaf curl virus (CaLCuV) infection uncovered 5,365 genes (false discovery rate <0.005) differentially expressed in infected rosette leaves at 12 d postinoculation. Data mining revealed that CaLCuV triggers a pathogen response via the salicylic acid pathway and induces expression of genes involved in programmed cell death, genotoxic stress, and DNA repair. CaLCuV also altered expression of cell cycle-associated genes, preferentially activating genes expressed during S and G2 and inhibiting genes active in G1 and M. A limited set of core cell cycle genes associated with cell cycle reentry, late G1, S, and early G2 had increased RNA levels, while core cell cycle genes linked to early G1 and late G2 had reduced transcripts. Fluorescence-activated cell sorting of nuclei from infected leaves revealed a depletion of the 4C population and an increase in 8C, 16C, and 32C nuclei. Infectivity studies of transgenic Arabidopsis showed that overexpression of CYCD3;1 or E2FB, both of which promote the mitotic cell cycle, strongly impaired CaLCuV infection. In contrast, overexpression of E2FA or E2FC, which can facilitate the endocycle, had no apparent effect. These results showed that geminiviruses and RNA viruses interface with the host pathogen response via a common mechanism, and that geminiviruses modulate plant cell cycle status by differentially impacting the CYCD/retinoblastoma-related protein/E2F regulatory network and facilitating progression into the endocycle

    Two Novel DNAs that enhance symptoms and overcome CMD2 resistance to cassava mosaic disease

    Get PDF
    Cassava mosaic begomoviruses (CMBs) cause cassava mosaic disease (CMD) across Africa and the Indian subcontinent. Like all members of the geminivirus family, CMBs have small, circular single-stranded DNA genomes. We report here the discovery of two novel DNA sequences, designated SEGS-1 and SEGS-2 (for sequences enhancing geminivirus symptoms), that enhance symptoms and break resistance to CMD. The SEGS are characterized by GC-rich regions and the absence of long open reading frames. Both SEGS enhanced CMD symptoms in cassava (Manihot esculenta Crantz) when coinoculated with African cassava mosaic virus (ACMV), East African cassava mosaic Cameroon virus (EACMCV), or East African cassava mosaic virus-Uganda (EACMV-UG). SEGS-1 also overcame resistance of a cassava landrace carrying the CMD2 resistance locus when coinoculated with EACMV-UG. Episomal forms of both SEGS were detected in CMB-infected cassava but not in healthy cassava. SEGS-2 episomes were also found in virions and whiteflies. SEGS-1 has no homology to geminiviruses or their associated satellites, but the cassava genome contains a sequence that is 99% identical to full-length SEGS-1. The cassava genome also includes three sequences with 84 to 89% identity to SEGS-2 that together encompass all of SEGS-2 except for a 52-bp region, which includes the episomal junction and a 26-bp sequence related to alphasatellite replication origins. These results suggest that SEGS-1 is derived from the cassava genome and facilitates CMB infection as an integrated copy and/or an episome, while SEGS-2 was originally from the cassava genome but now is encapsidated into virions and transmitted as an episome by whiteflies.Cassava mosaic begomoviruses (CMBs) cause cassava mosaic disease (CMD) across Africa and the Indian subcontinent. Like all members of the geminivirus family, CMBs have small, circular single-stranded DNA genomes. We report here the discovery of two novel DNA sequences, designated SEGS-1 and SEGS-2 (for sequences enhancing geminivirus symptoms), that enhance symptoms and break resistance to CMD. The SEGS are characterized by GC-rich regions and the absence of long open reading frames. Both SEGS enhanced CMD symptoms in cassava (Manihot esculenta Crantz) when coinoculated with African cassava mosaic virus (ACMV), East African cassava mosaic Cameroon virus (EACMCV), or East African cassava mosaic virus-Uganda (EACMV-UG). SEGS-1 also overcame resistance of a cassava landrace carrying the CMD2 resistance locus when coinoculated with EACMV-UG. Episomal forms of both SEGS were detected in CMB-infected cassava but not in healthy cassava. SEGS-2 episomes were also found in virions and whiteflies. SEGS-1 has no homology to geminiviruses or their associated satellites, but the cassava genome contains a sequence that is 99% identical to full-length SEGS-1. The cassava genome also includes three sequences with 84 to 89% identity to SEGS-2 that together encompass all of SEGS-2 except for a 52-bp region, which includes the episomal junction and a 26-bp sequence related to alphasatellite replication origins. These results suggest that SEGS-1 is derived from the cassava genome and facilitates CMB infection as an integrated copy and/or an episome, while SEGS-2 was originally from the cassava genome but now is encapsidated into virions and transmitted as an episome by whiteflies
    corecore