317 research outputs found

    Hadronic Axion Model in Gauge-Mediated Supersymmetry Breaking

    Get PDF
    A simple hadronic axion model is proposed in the framework of gauge-mediated supersymmetry breaking. Dynamics of Peccei-Quinn symmetry breaking is governed by supersymmetry breaking effects and the Peccei-Quinn breaking scale fPQf_{PQ} is inversely proportional to the gravitino mass. The gravitino mass range which corresponds to the axion window fPQ109f_{PQ} \simeq 10^{9} GeV -- 101310^{13} GeV lies in the region predicted by gauge-mediated supersymmetry breaking models. The model is also shown to be cosmologically viable.Comment: 20 pages including seven postscript figures, reviced version to be published in Physics Letters

    Gravitinos from Heavy Scalar Decay

    Full text link
    Cosmological issues of the gravitino production by the decay of a heavy scalar field XX are examined, assuming that the damped coherent oscillation of the scalar once dominates the energy of the universe. The coupling of the scalar field to a gravitino pair is estimated both in spontaneous and explicit supersymmetry breaking scenarios, with the result that it is proportional to the vacuum expectation value of the scalar field in general. Cosmological constraints depend on whether the gravitino is stable or not, and we study each case separately. For the unstable gravitino with M3/2M_{3/2} \sim 100GeV--10TeV, we obtain not only the upper bound, but also the lower bound on the reheating temperature after the XX decay, in order to retain the success of the big-bang nucleosynthesis. It is also shown that it severely constrains the decay rate into the gravitino pair. For the stable gravitino, similar but less stringent bounds are obtained to escape the overclosure by the gravitinos produced at the XX decay. The requirement that the free-streaming effect of such gravitinos should not suppress the cosmic structures at small scales eliminates some regions in the parameter space, but still leaves a new window of the gravitino warm dark matter. Implications of these results to inflation models are discussed. In particular, it is shown that modular inflation will face serious cosmological difficulty when the gravitino is unstable, whereas it can escape the constraints for the stable gravitino. A similar argument offers a solution to the cosmological moduli problem, in which the moduli is relatively heavy while the gravitino is light.Comment: 14 pages, 8 figure

    HCV Virus and Lymphoid Neoplasms

    Get PDF
    Hepatitis C virus (HCV) is one of the viruses known to cause hepatic cancer. HCV is also believed to be involved in malignant lymphoma. In this paper, we investigated characteristics of malignant lymphoma cases that were anti-HCV antibody (HCV-Ab) positive. We were able to perform pathological examinations on 13 out of 14 HCV-positive cases. Of these, lymphoid tissues of 10 stained positive for HCV-Ab. There was no significant correlation between the degree of HCV staining and the rate of recurrence or resistance to treatment. However, there did appear to be a consistent decrease in the amount of HCV-RNA between pre- and posttreatment among HCV-Ab-positive cases; that is, treatment-resistant cases that exhibited resistance from the first treatment and recurrent cases more frequently had a higher HCV level at treatment termination compared to the pretreatment level. This suggests that the HCV virus either accelerates oncogenesis by direct interaction with B cells or indirectly affects lymphoma prognosis

    Rituximab Administration and Reactivation of HBV

    Get PDF
    Rituximab is a drug used for the treatment of B-cell non-Hodgkin's lymphoma, and its range of use has expanded to the treatment of collagen diseases such as idiopathic thrombocytopenic purpura and rheumatoid arthritis. One serious complication of rituximab use is the reactivation of dormant hepatitis B virus, and prevention of this phenomenon has become an urgent issue. This paper provides a general outline of the problem through an analysis of patient cases that we and other groups have experienced to date

    Late-time entropy production due to the decay of domain walls

    Full text link
    It is shown that late-time decay of domain walls can dilute unwanted relics such as moduli, if the universe was dominated by frustrated domain walls with tension σ=(1100TeV)3\sigma = (1 - 100 TeV)^3. Since energy density of the frustrated domain walls decreases as slow as the inverse of the scale factor, an overclosure limit on the axion decay constant faf_a is also considerably relaxed. In fact faf_a can be as large as the Planck scale, which may enable us to naturally implement the QCD axion in the string scheme. Furthermore, in contrast to thermal inflation models, the Affleck-Dine baryogenesis can generate enough asymmetry to explain the present baryon abundance, even in the presence of late-time entropy production.Comment: 5 pages, no figure; a few explanatory comments are added, conclusion unchange

    Hubble Induced Mass in Radiation Dominated Universe

    Get PDF
    We reconsider the effective mass of a scalar field which interact with visible sector via Planck-suppressed coupling in supergravity framework. We focus on the radiation-dominated (RD) era after inflation. In this era, the effective mass is given by thermal average of interaction terms. To make our analysis clear, we rely on Kadanoff-Baym equations to evaluate the thermal average. We find that, in RD era, a scalar field acquires the effective mass of the order of HH.Comment: 10 pages, v2:minor corrections and a reference added, v3:a footnote added, version accepted by PL

    Right-handed sneutrino dark matter and big-bang nucleosynthesis

    Get PDF
    We study the light-element abundances in supersymmetric model where the right-handed sneutrino is the lightest superparticle (LSP), assuming that the neutrino masses are purely Dirac-type. In such a scenario, the lightest superparticle in the minimal supersymmetric standard model sector (which we call MSSM-LSP) becomes long-lived, and thermal relic MSSM-LSP may decay after the big-bang nucleosynthesis starts. We calculate the light-element abundances including non-standard nuclear reactions induced by the MSSM-LSP decay, and derive constraints on the scenario of right-handed sneutrino LSP.Comment: 13 pages, 4 figure

    Hadronic Axion Model in Gauge-Mediated Supersymmetry Breaking and Cosmology of Saxion

    Get PDF
    Recently we have proposed a simple hadronic axion model within gauge-mediated supersymmetry breaking. In this paper we discuss various cosmological consequences of the model in great detail. A particular attention is paid to a saxion, a scalar partner of an axion, which is produced as a coherent oscillation in the early universe. We show that our model is cosmologically viable, if the reheating temperature of inflation is sufficiently low. We also discuss the late decay of the saxion which gives a preferable power spectrum of the density fluctuation in the standard cold dark matter model when compared with the observation.Comment: 24 pages, 3 figure

    Anomaly-Mediated Supersymmetry Breaking with Axion

    Get PDF
    We construct hadronic axion models in the framework of the anomaly-mediated supersymmetry breaking scenario. If the Peccei-Quinn symmetry breaking is related to the supersymmetry breaking, mass spectrum of the minimal anomaly-mediated scenario is modified, which may solve the negative slepton mass problem in the minimal anomaly-mediated model. We find several classes of phenomenologically viable models of axion within the framework of the anomaly mediation and, in particular, we point out a new mechanism of stabilizing the axion potential. In this class of models, the Peccei-Quinn scale is related to the messenger scale. We also study phenomenological aspects of this class of models. We will see that, in some case, the lightest particle among the superpartners of the standard-model particles is stau while the lightest superparticle becomes the axino, the superpartner of the axion. With such a unique mass spectrum, conventional studies of the collider physics and cosmology for supersymmetric models should be altered.Comment: 20 pages, 5 figures, added footnotes and references for section
    corecore