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We reconsider the effective mass of a scalar field which interact with visible sector via Planck-suppressed
coupling in supergravity framework. We focus on the radiation-dominated (RD) era after inflation. In this
era, the effective mass is given by thermal average of interaction terms. To make our analysis clear, we
rely on Kadanoff–Baym equations to evaluate the thermal average. We find that, in RD era, a scalar field
acquires the effective mass of the order of H .

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Supergravity provides many interesting phenomena in the early
universe where Planck-suppressed operators play an important
role. In inflationary era, a scalar field generally obtain Hubble-
induced effective mass of order H through supergravity effect [1].
In a word, this Hubble-induced mass is originated from the energy
of inflation which breaks supersymmetry [2]. After inflationary era,
reheating process may occur and radiation-dominated (RD) era fol-
lows. Then a question arise: is there any source for the effective
mass of the order of H after inflation? There is a possibility that
the thermal plasma in RD era provides the source as expected in
Ref. [2], since the inflation energy seems to have converted to the
energy of the plasma through reheating process. Our main purpose
of this study is to answer the above question.

We consider two complex scalar fields φ and χ , whose masses
are originally (i.e., at zero temperature) much smaller than the
Hubble scale H , in supergravity framework. Here, φ is assumed
to be decoupled from the thermal bath, whereas χ is in equilib-
rium with the bath in RD era. It is assumed that these two fields
φ,χ interact with each other via the non-minimal Kähler potential
given by

K = |φ|2 + |χ |2 + c
|φ|2|χ |2

M2
P

, (1)

where MP � 2.4 × 1018 GeV is the reduced Planck mass and c =
O(1) is a model-dependent parameter. Then, the kinetic term of χ
has the form [3]:
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Lχ
kin.

= Kχχ̄ ∂μχ∗∂μχ

=
(

1 + c
|φ|2
M2

P

)
∂μχ∗∂μχ. (2)

In the following, we consider the effective mass-squared of the
scalar field φ, m̃2

φ , especially in RD era after the inflationary era.
In this era, when the Hubble-induced mass due to the inflation
potential disappear, we are interested in what a value the effective
mass-squared m̃2

φ takes. In Ref. [4], it is insisted that the effective
mass-squared takes a value much smaller than the Hubble scale:

m̃2
φ ∼ m2

χ

T 2 H2 � H2, where mχ is the zero temperature mass of χ

and T is the temperature of the thermal bath.
However, the following argument seems possible [5]. From the

kinetic term Eq. (2), the effective mass-squared m̃2
φ originated from

the φ–χ Planck-suppressed interaction is generally written as

m̃2
φ

∣∣
kin.

= − c

M2
P

〈
∂μχ∗∂μχ

〉
. (3)

Hereafter, 〈· · ·〉 ≡ tr(ρ̂ · · ·)/ tr(ρ̂) represents an expectation value
with the density matrix ρ̂ . For a thermal equilibrium system, 〈· · ·〉
gives the thermal average with ρ̂ = exp(−βĤ), where β = 1/T is
the inverse temperature and Ĥ is the Hamiltonian of the system.
Therefore, the effective mass-squared of φ originated from Eq. (2)
is determined by the thermal average 〈∂μχ∗∂μχ 〉 in RD era. Us-
ing equation of motion for χ , we naively estimate the effective
mass-squared as1

m̃2
φ

∣∣
kin.

� c

M2
P

〈
χ∗�χ

〉

1 Such an estimate seems to have been raised in Ref. [2].
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� −cm2
th

M2
P

〈
χ∗χ

〉

� −cg2 H2, (4)

where g is a coupling strength of the scalar field χ to the thermal
bath. Here, thermal mass mth � gT for χ , 〈χ∗χ 〉 � T 2, and T 4 �
H2M2

p are used. In Eq. (4), the nontrivial equalities are the first
and second line, namely, it is ambiguous whether or not we can
use equation of motion and the thermal mass in the equalities.

There is another naive estimation. Let us directly evaluate
〈∂μχ∗∂μχ 〉 by using the expansion of the scalar field χ :

χ(x) =
∫

d3k

(2π)32ωk

(
ake−ik·x + a†

keik·x) (5)

where ωk =
√

k2 + M2
χ , Mχ is a kinetic mass of χ , and ak(a†

k) is

the annihilation (creation) operator. Then,

m̃2
φ

∣∣
kin.

= − c

M2
P

〈
∂μχ∗∂μχ

〉

= −cM2
χ

M2
P

∫
d3k

(2π)32ωk

1

eβωk − 1
, (6)

where we have used k2 = M2
χ . One may consider Mχ is the zero

temperature mass Mχ = mχ � T , leading to m̃2
φ � H2. On the

other hand, as the scalar field χ is in the thermal bath, another
may insist χ acquire a thermal mass and Mχ = mth � gT , leading
to m̃2

φ � H2. These considerations should be confirmed by using a
reliable formulation.

Therefore, the main purpose of the present Letter is to an-
swer the question whether 〈∂μχ∗∂μχ 〉 � g2T 4 is correct or not.
The strategy is to express 〈∂μχ∗∂μχ 〉 by a solution of Kadanoff–
Baym (KB) equations [6] which naturally describe thermal effects
in Green functions. By using a solution of KB equations, we could
answer the above question quantitatively.

The construction of this Letter is as following: in Section 2, we
briefly describe the KB equations and their solution. In Section 3,
we express 〈∂μχ∗∂μχ 〉 by a solution of KB equations and derive
a formula for the effective mass-squared of the scalar field φ with
the quasiparticle approximation for the scalar field χ . Section 4 is
devoted to conclusion.

2. Kadanoff–Baym equations for a real scalar field

In this section, we briefly review the formalism of KB equations
[7–9], which we use to express 〈∂μχ∗∂μχ 〉 in the next section.
Although KB equations are usually applied to non-equilibrium sys-
tem, we can use them also to equilibrium system [8,9]. In prospect
of extension our analysis to non-equilibrium situations in future,
we use KB equations to an equilibrium setup in the next section.

We decompose the complex scalar field χ as

χ = 1√
2
(χ1 + iχ2), (7)

where χ1 and χ2 are real scalar fields. In the following, we treat
only the real scalar field χ1 for simplicity. The generalization to
the complex scalar field χ is straightforward.

In Minkowski space–time, the time-ordered Green function for
an interacting real scalar field χ1 in the Keldysh formalism [10],
	C (x1, x2), satisfies the following Dyson–Schwinger equation:

(
�1 + m2

χ

)
	C (x1, x2) +

∫
C

d4x′ iΠC
(
x1, x′)	C

(
x′, x2

)

= −iδ(4)
(x1 − x2), (8)
C
where C denotes the Keldysh contour and ΠC (x1, x2) is the
self-energy of χ1. Here, 	C (x1, x2) = θC (t1 − t2)	

>(x1, x2) +
θC (t2 − t1)	

<(x1, x2), 	>(x1, x2) = 〈χ(x1)χ(x2)〉 and 	<(x1, x2) =
〈χ(x2)χ(x1)〉. δC (t) and θC (t) are the delta function and theta
function on the contour C , respectively. Now, we define

	−(x1, x2) = i
(
	>(x1, x2) − 	<(x1, x2)

) = i
〈[
χ(x1),χ(x2)

]〉
,

	+(x1, x2) = 1

2

(
	>(x1, x2) + 	<(x1, x2)

) = 1

2

〈{
χ(x1),χ(x2)

}〉
,

(9)

which are called spectral function and statistical propagator, re-
spectively. For the self-energy of χ1, we decompose ΠC (x1, x2) as
ΠC (x1, x2) = θC (t1 − t2)Π

>(x1, x2) + θC (t2 − t1)Π
<(x1, x2) and we

define

Π−(x1, x2) = i
(
Π>(x1, x2) − Π<(x1, x2)

)
,

Π+(x1, x2) = 1

2

(
Π>(x1, x2) + Π<(x1, x2)

)
. (10)

Assuming spatial homogeneity, the Dyson–Schwinger equa-
tion (8) is reduced to the following coupled equations for the
spatial Fourier transforms 	−

p and 	+
p

2:

(
∂2

t1
+ ω2

p

)
	−

p (t1, t2) +
t1∫

t2

dt′ Π−
p

(
t1, t′)	−

p

(
t′, t2

) = 0,

(
∂2

t1
+ ω2

p

)
	+

p (t1, t2) +
t1∫

ti

dt′ Π−
p

(
t1, t′)	+

p

(
t′, t2

)

=
t2∫

ti

dt′ Π+
p

(
t1, t′)	−

p

(
t′, t2

)
, (11)

where ω2
p = p2 + m2

χ , and ti is an initial time. These equations are
called 1st and 2nd Kadanoff–Baym equations, respectively.

In the following, we also assume time translational invariance
as well as the spatial homogeneity for simplicity. These assump-
tions are justified when a thermal equilibrium system is con-
cerned.3 In this case, the spatial Fourier transform 	−

p (t1, t2) de-
pends only on the time difference y = t1 − t2. Moreover, from the
equal-time commutation relation of χ1, the boundary condition for
	p is given by

	−
p (y)

∣∣
y=0 = ∂2

y	
−
p (y)

∣∣
y=0 = 0,

∂y	
−
p (y)

∣∣
y=0 = 1. (12)

Then, the solution of the 1st KB equation is given by [8]

	−
p (y) = i

∞∫
−∞

dω

2π
e−iωyρp(ω),

ρp(ω) = −2 Im Π R
p (ω) + 2ωε

[ω2 − ω2
p − ReΠ R

p (ω)]2 + [Im Π R
p (ω) − ωε]2

, (13)

where Π R
p (ω) is the Fourier transform of Π R(x1, x2) = θ(t1 −

t2)Π
−(x1, x2) and ε → +0. From Eq. (13), we can see that the

2 Strictly speaking, Eq. (11) is derived assuming a Gaussian initial condition for
the Green functions. When a non-Gaussian initial condition is taken into account,
there are additional terms to the 2nd KB equation [9].

3 For non-equilibrium systems, see Refs. [7,8,11,12] for example.
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spectral function of χ1 has thermally corrected poles in RD era,
namely, the dispersion relations of the poles differ from the ones
in zero temperature.

3. Hubble-induced mass from kinetic term

In this section, we derive a formula for the effective mass of the
scalar field φ. We assume here spatial homogeneity and isotropy
of the background metric. We also take mχ = 0 for simplicity, al-
though the following argument can be applied for nonzero mχ

with mχ � H .

3.1. Formulation with quasiparticle approximation

Using the KB equations described in the previous section, let us
evaluate the expectation value 〈∂μχ1∂

μχ1〉 when χ1 is in equi-
librium with the thermal bath. Here, χ1 is assumed to be in
non-equilibrium with the bath at an initial time ti and then ther-
malized at a late time. Such a situation is discussed with the
usage of Eq. (11) in literatures (see [7,8] for example). We eval-
uate 〈∂μχ1∂

μχ1〉 at a late time so that χ1 under consideration
is in thermal equilibrium. Then, Eq. (11) can be applied to the
evaluation of 〈∂μχ1∂

μχ1〉, while χ1 is in thermal equilibrium. The
thermalization of χ1 is assumed to take much less time than the
Hubble expansion time scale, and the effect of Hubble expansion
rate is effectively included in the plasma temperature T .4 More-
over, assuming the thermal bath is large enough, we neglect the
effect of φ–χ1 interaction (1) to the bath.

First of all, we express this expectation value by the statistical
propagator for the real scalar field χ1. For this purpose, we note
the following equation:〈
∂μχ1(x)∂μχ1(x)

〉 = ∂x1
μ ∂x2μ	+(x1, x2)

∣∣
x1=x2=x. (14)

Since χ1 is in thermal equilibrium, the spectral function and the
statistical propagator for χ1 depend only on the difference of two
points: 	±(x1, x2) = 	±(eq)(x1 − x2). We firstly use the spatial
Fourier transform as〈
∂μχ1(x)∂μχ1(x)

〉

= ∂x1
μ ∂x2μ

∫
d3p

(2π)3
e−ip·(x1−x2)	

+(eq)
p (t1 − t2)

∣∣∣∣
x1=x2=x

=
∫

d3p

(2π)3

(−∂2
y − p2)	+(eq)

p (y)

∣∣∣∣
y=0

, (15)

where y = t1 − t2.
Next, we have to know the expression for 	

+(eq)
p (y). Since the

real scalar field χ1 is in thermal equilibrium, we can use the KMS
relation [15]:

	
+(eq)
p (ω) = −i

2
coth

(
βω

2

)
	

−(eq)
p (ω). (16)

In fact, in Ref. [8], it is discussed that the KMS relation is realized
for a real scalar field like χ1 at a late time using Eq. (11). Then, we
obtain the following expression:

	
+(eq)
p (y) =

∞∫
−∞

dω

2π
e−iωy	

+(eq)
p (ω)

=
∞∫

−∞

dω

4π
e−iωy coth

(
βω

2

)
ρp(ω), (17)

4 KB equations in curved space–time has been studied in Ref. [13].
where the relation 	
−(eq)
p (ω) = iρp(ω) has been used.

Now, the problem is reduced to what a form the spectral func-
tion ρp takes, whose general form is already known from Eq. (13).
We take Eq. (13) as the basis of our study below. Let us apply the
quasiparticle approximation to the real scalar field χ1 in the ther-
mal bath. In this approximation, the interactions are assumed to
be included in the thermally corrected effective masses of quasi-
particles [16]. Then, quasiparticles interact only weakly, and the
imaginary parts of poles of the spectral function are assumed to be
much smaller than the real counterparts. Therefore, in the quasi-
particle approximation of χ1, the spectral function Eq. (13) has the
Breit–Wigner form:

ρp(ω) �
∑
r=±

1

Ωp

rΓp/2

(rω − Ωp)2 + (Γp/2)2
. (18)

There are four poles in the spectral function (18). If we denote one
of the poles as Ω̂p = Ωp − iΓp/2, the spectral function ρp(ω) has
two poles Ω̂p , −Ω̂∗

p in the lower half complex-ω plane, and two

poles Ω̂∗
p , −Ω̂p in the upper half plane. Here, Ωp is the quasipar-

ticle energy and Γp = − Im Π R
p (Ωp)/Ωp is the quasiparticle width.

Then, it is easy to obtain 	
+(eq)
p (y) from Eq. (17) by using the

complex integration as5

	
+(eq)
p (y) = Re

{
e−iΩ̂p y

Ωp

(
1

2
+ nB(Ω̂p)

)}
, (19)

where nB(ω) = 1/(eβω − 1) is the Bose–Einstein distribution func-
tion.

Now, we are in position to evaluate the expectation value
〈∂μχ1(x)∂μχ1(x)〉. Substituting Eq. (19) into Eq. (15), we obtain
the following expression:

〈
∂μχ1(x)∂μχ1(x)

〉

= 1

2π2

∞∫
0

dp p2 Re

{
Ω̂2

p − p2

Ωp

(
1

2
+ nB(Ω̂p)

)}
, (20)

where we have used spatial isotropy since χ1 is in thermal equi-
librium. We note that the time derivative in Eq. (15) picks up the
thermally corrected poles, which make sure the validity of substi-
tuting thermal mass in our naive estimate in Eqs. (4) and (6).

3.2. Expectation value of kinetic term and the Hubble-induced mass of
scalar field φ

In this subsection, we write down more explicit expression for
〈∂μχ1(x)∂μχ1(x)〉 in somewhat special but interesting case, so as
to examine the estimate 〈∂μχ∗(x)∂μχ(x)〉 ∼ g2T 2 quantitatively.

In the quasiparticle approximation for the real scalar field χ1
which is in thermal equilibrium, the width Γp is assumed to be
much smaller than the quasiparticle energy Ωp . In general, the
dispersion relation for Ωp has a complicated dependence on the
momentum p and different from the one in vacuum [14]. However,
for simplicity, we consider the case where Ω̂p has the following
form:

Ω̂p =
√

p2 + m2
th − iΓp/2 (mth  Γp). (21)

5 There are other poles on imaginary axis of complex-ω plane arising from the
factor coth(βω/2) in Eq. (17). These poles, however, converge on the origin of the
plane in zero temperature limit, and are irrelevant to 1-particle state poles in zero
temperature. Thus, in the following argument, we neglect these “thermal poles”.
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Such a form can be realized at the leading order if the self-energy
of the real scalar field χ1 is dominated by, for example, the quartic
interactions [11]. In this case, the factor in Eq. (20) becomes

Ω̂2
p − p2

Ωp
= m2

th√
p2 + m2

th

+O(Γp). (22)

Since mth  Γp , we neglect the second term in Eq. (22) and obtain

〈
∂μχ1(x)∂μχ1(x)

〉

� m2
th

2π2

∞∫
0

dp
p2√

p2 + m2
th

(
1

2
+ nB

(√
p2 + m2

th

))

= m2
th

(〈
χ2

1 (x)
〉
vac + 〈

χ2
1 (x)

〉
T

)
. (23)

Here, 〈χ2
1 (x)〉vac and 〈χ2

1 (x)〉T are given by

〈
χ2

1 (x)
〉
vac = 1

4π2

∞∫
0

dp
p2√

p2 + m2
th

,

〈
χ2

1 (x)
〉
T = 1

2π2

∞∫
0

dp
p2√

p2 + m2
th

nB

(√
p2 + m2

th

)

= T 2

2π2
J (βmth), (24)

and J (α) is defined by

J (α) ≡
∞∫

α

dx

√
x2 − α2

ex − 1
. (25)

Therefore, neglecting the vacuum contribution 〈χ2
1 (x)〉vac,6 we ob-

tain

〈
∂μχ1(x)∂μχ1(x)

〉 = m2
thT 2

2π2
J (βmth)

� κ
g2T 4

12
. (26)

Here, since the thermal mass of χ1 depends on the form of in-
teraction with particles in the thermal bath, we have introduced
a model-dependent parameter κ �O(1) and used thermal mass7

of the form m2
th = κ g2T 2. We have also used an approximation

J (βmth) = J (κ g) ∼ J (0) = π2/6 in the last line.
Then, we can conclude that the statement “〈∂μχ1(x)∂μχ1(x)〉 ∼

g2T 4” for the real scalar field χ1 is verified in the case where the
width is much smaller than the quasiparticle energy. It is easy to
extent Eq. (26) to the kinetic term for the complex scalar field χ :

6 Since supergravity framework has a cutoff scale MP, we can regulate the diver-
gent vacuum contribution 〈χ2

1 (x)〉vac . We find that the temperature dependent part

of 〈χ2
1 (x)〉vac has a form like

m2
th

8π2 ln mth
2MP

and is much smaller than 〈χ2
1 (x)〉T for a

sufficiently small coupling g .
7 For example, if the interaction term is given by Lint = − g√

2
χ1ψ̄ψ −

g2

2 χ2
1 (ψ̃∗

1 ψ̃1 + ψ̃∗
2 ψ̃2), the parameter is κ = 1/4 in 1-loop Hard-Thermal-Loop (HTL)

approximation [14]. Here, ψ , ψ̃i (i = 1,2) are massless Dirac Fermion and complex
scalar field, respectively, and both in the thermal bath. In finite temperature with
HTL approximation, a fermionic loop has not only the same factor (−1) as in the
zero temperature system but also has another factor (−1) arising from the anti-
periodicity of fermionic field [14]. Thus, the bosonic and fermionic contributions to
the thermal mass of χ1 do not cancel out each other.
〈
∂μχ∗(x)∂μχ(x)

〉 = 〈
∂μχ1(x)∂μχ1(x)

〉

= m2
thT 2

2π2
J (βmth). (27)

Then, the effective mass-squared for the scalar field φ contributed
from the kinetic term of χ is given by

m̃2
φ

∣∣
kin.

= − c

M2
P

m2
thT 2

2π2
J (βmth)

� − 15cκ

2π2 g∗
g2 H2, (28)

where the relation 3M2
P H2 = π2 g∗

30 T 4 in RD era is used. Here, g∗ is
the effective number of the relativistic degrees of freedom in the
thermal bath. This is the result which answer the question we raise
in Introduction, namely, the thermal plasma in the early universe
provide a source for the Hubble-induced mass-squared � g2 H2/g∗
under the Kähler potential (1). We note that if there are N complex
scalar fields like χ in the thermal bath, the Hubble-induced mass-
squared Eq. (28) would be enhanced by a factor N .

So far, we have considered the kinetic term of the scalar
field χ only. In supersymmetry framework, however, there is also
fermionic counterpart χ̃ . It is expected that the kinetic term of
χ̃ also contributes to the effective mass-squared m̃2

φ . Using KB
equations, we could evaluate the contribution from fermion kinetic
term as well as the bosonic one. The result will be reported else-
where [17].

Finally, we comment on the effects of the superpotential. In ad-
dition to the kinetic term, the Kähler potential (1) is also coupled
to scalar and fermionic fields in the superpotential. So, super-
potential may provide another significant source to the effective
mass-squared m̃2

φ . Such a contribution would give the same order
of Eq. (28).

4. Conclusion

We have analyzed the effect of the non-minimal Kähler poten-
tial Eq. (1) in RD era. In order to base on a reliable formalism, we
use KB equations (11) to express the expectation value 〈∂μχ∗∂μχ 〉
despite the fact that we are interested in equilibrium system. The
result we have obtained under reasonable assumptions is given
in Eq. (28), which makes sure the existence of order H2 con-
tribution to m̃2

φ in RD era. Such a Hubble-induced mass-squared
in RD era may affects some cosmological scenarios. A complete
analysis which also includes other possible sources will be pro-
vided in Ref. [17]. Although we have assumed χ is in thermal
equilibrium in this study, the time evolution of the effective mass-
squared m̃2

φ could be investigated by using KB equations to a non-
equilibrium situation under a reasonable definition of the effective
mass.
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