3,431 research outputs found

    Slow Light amplification in a non-inverted gain medium

    Full text link
    We investigate the propagation of a coherent probe light pulse through a three-level atomic medium (in the Λ\Lambda--configuration) in the presence of a pump laser under the conditions for gain without inversion. When the carrier frequency of the probe pulse and the pump laser are in a Raman configuration, we show that it is possible to amplify a slow propagating pulse. We also analyze the regime in which the probe pulse is slightly detuned from resonance where we observe anomalous light propagation.Comment: 7 pages, 10 figures. To be published in Europhysics Letter

    Quantum theory of a polarization phase-gate in an atomic tripod configuration

    Full text link
    We present the quantum theory of a polarization phase-gate that can be realized in a sample of ultracold rubidium atoms driven into a tripod configuration. The main advantages of this scheme are in its relative simplicity and inherent symmetry. It is shown that the conditional phase shifts of order π\pi can be attained.Comment: X International Conference on Quantum Optics, Minsk, Belaru

    "Electromagnetic induced transparency of Wannier-Mott excitons"

    Get PDF
    We predict a remarkable quenching of the absorption due to electromagnetic-induced transparency in an undoped bulk semiconductor. For free-exciton lines the effect is expected to be as large as that observed in atomic systems. The conditions for its occurrence are determined and numerical estimates are presented for the specific case of the "yellow" exciton of Cu2O

    Commissioning of the ATLAS Muon Trigger System with early data

    Get PDF
    An overview of the early results on commissioning and performance of the ATLAS Muon Trigger System is shown. The ATLAS Muon Trigger has been designed to cope with the high interaction rate expected at the LHC. The presented performance studies have been obtained using both cosmic-ray and 900GeV collision data

    Polarization phase gate with a tripod atomic system

    Get PDF
    We analyze the nonlinear optical response of a four-level atomic system driven into a tripod configuration. The large cross-Kerr nonlinearities that occurr in such a system are shown to produce nonlinear phase shift of order π\pi. Such a substantial shift may be observed in a cold atomic gas in a magneto-optical trap where it coupl be fasibly exploited towards the realization of a polarization quantum phase gate. The experimental feasibility of such a gate is here examined in detail.Comment: Corrected versio

    The regime of electromagnetically induced transparency in optically dense media: from atoms to excitons

    Get PDF
    The phenomenon of electromagnetically induced transparency (EIT) was discovered by Adriano Gozzini and coworkers in 1976 in Pisa. Novel schemes to investigate and exploit EIT in the optical domain have attracted much interest both in atomic and solid state systems. We discuss some of our recent theoretical results, in particular: i) a well developed EIT regime based on free exciton levels in undoped bulk crystalline Cu2O; ii) light dragging effects in moving media under EIT; iii) the coherent control of Cherenkov radiation in the EIT regime

    Transverse Fresnel-Fizeau drag effects in strongly dispersive media

    Full text link
    A light beam normally incident upon an uniformly moving dielectric medium is in general subject to bendings due to a transverse Fresnel-Fizeau light drag effect. In conventional dielectrics, the magnitude of this bending effect is very small and hard to detect. Yet, it can be dramatically enhanced in strongly dispersive media where slow group velocities in the m/s range have been recently observed taking advantage of the electromagnetically induced transparency (EIT) effect. In addition to the usual downstream drag that takes place for positive group velocities, we predict a significant anomalous upstream drag to occur for small and negative group velocities. Furthermore, for sufficiently fast speeds of the medium, higher order dispersion terms are found to play an important role and to be responsible for peculiar effects such as light propagation along curved paths and the restoration of the spatial coherence of an incident noisy beam. The physics underlying this new class of slow-light effects is thoroughly discussed

    Using Low-Power, Low-Cost IoT Processors in Clinical Biosignal Research: An In-depth Feasibility Check

    Get PDF
    Research on biosignal (ExG) analysis is usually performed with expensive systems requiring connection with external computers for data processing. Consumer-grade low-cost wearable systems for bio-potential monitoring and embedded processing have been presented recently, but are not considered suitable for medical-grade analyses. This work presents a detailed quantitative comparative analysis of a recently presented fully-wearable low-power and low-cost platform (BioWolf) for ExG acquisition and embedded processing with two researchgrade acquisition systems, namely, ANTNeuro (EEG) and the Noraxon DTS (EMG). Our preliminary results demonstrate that BioWolf offers competitive performance in terms of electrical properties and classification accuracy. This paper also highlights distinctive features of BioWolf, such as real-time embedded processing, improved wearability, and energy-efficiency, which allows devising new types of experiments and usage scenarios for medical-grade biosignal processing in research and future clinical studies

    Polaritonic stop-band transparency via exciton-biexciton coupling in CuCl

    Get PDF
    Radiation is almost completely reflected within the exciton-polariton stop band of a semiconductor, as in the typical case of CuCl. We predict, however, that a coherently driven exciton-biexciton transition allows for the propagation of a probe light beam within the stop band. The phenomenon is reminiscent of electromagnetically induced transparency effects occurring in three-level atomic systems, except that it here involves delocalized electronic excitations in a crystalline structure via a frequency and wave-vector selective polaritonic mechanism. A well-developed transparency, favored by the narrow linewidth of the biexciton, is established within the stop band where a probe pulse may propagate with significant delays. The transparency window can be controlled via the pump beam detuning and intensity
    • …
    corecore