39 research outputs found

    miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity

    Get PDF
    miR-132 and miR-212 are two closely related miRNAs encoded in the same intron of a small non-coding gene, which have been suggested to play roles in both immune and neuronal function. We describe here the generation and initial characterisation of a miR-132/212 double knockout mouse. These mice were viable and fertile with no overt adverse phenotype. Analysis of innate immune responses, including TLR-induced cytokine production and IFNĪ² induction in response to viral infection of primary fibroblasts did not reveal any phenotype in the knockouts. In contrast, the loss of miR-132 and miR-212, while not overtly affecting neuronal morphology, did affect synaptic function. In both hippocampal and neocortical slices miR-132/212 knockout reduced basal synaptic transmission, without affecting paired-pulse facilitation. Hippocampal long-term potentiation (LTP) induced by tetanic stimulation was not affected by miR-132/212 deletion, whilst theta burst LTP was enhanced. In contrast, neocortical theta burst-induced LTP was inhibited by loss of miR-132/212. Together these results indicate that miR-132 and/or miR-212 play a significant role in synaptic function, possibly by regulating the number of postsynaptic AMPA receptors under basal conditions and during activity-dependent synaptic plasticity

    The loop structure and the RNA helicase p72/DDX17 influence the processing efficiency of the mice miR-132

    Get PDF
    miRNAs are small RNAs that are key regulators of gene expression in eukaryotic organisms. The processing of miRNAs is regulated by structural characteristics of the RNA and is also tightly controlled by auxiliary protein factors. Among them, RNA binding proteins play crucial roles to facilitate or inhibit miRNA maturation and can be controlled in a cell, tissue and species-specific manners or in response to environmental stimuli. In this study we dissect the molecular mechanism that promotes the overexpression of miR-132 in mice over its related, co-transcribed and co-regulated miRNA, miR-212. We have shown that the loop structure of miR-132 is a key determinant for its efficient processing in cells. We have also identified a range of RNA binding proteins that recognize the loop of miR-132 and influence both miR-132 and miR-212 processing. The DEAD box helicase p72/DDX17 was identified as a factor that facilitates the specific processing of miR-132

    MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer

    Get PDF
    We previously reported that miR-1 is among the most consistently down-regulated miRs in primary human prostate tumors. In this follow-up study, we further corroborated this finding in an independent data set and made the novel observation that miR-1 expression is further reduced in distant metastasis and is a candidate predictor of disease recurrence. Moreover, we performed in vitro experiments to explore the tumor suppressor function of miR-1. Cell-based assays showed that miR-1 is epigenetically silenced in human prostate cancer. Overexpression of miR-1 in these cells led to growth inhibition and down-regulation of genes in pathways regulating cell cycle progression, mitosis, DNA replication/repair and actin dynamics. This observation was further corroborated with protein expression analysis and 3ā€²-UTR-based reporter assays, indicating that genes in these pathways are either direct or indirect targets of miR-1. A gene set enrichment analysis revealed that the miR-1-mediated tumor suppressor effects are globally similar to those of histone deacetylase inhibitors. Lastly, we obtained preliminary evidence that miR-1 alters the cellular organization of F-actin and inhibits tumor cell invasion and filipodia formation. In conclusion, our findings indicate that miR-1 acts as a tumor suppressor in prostate cancer by influencing multiple cancer-related processes and by inhibiting cell proliferation and motility

    They Are What You Eat: Can Nutritional Factors during Gestation and Early Infancy Modulate the Neonatal Immune Response?

    Get PDF
    The ontogeny of the human immune system is sensitive to nutrition even in the very early embryo, with both deficiency and excess of macro- and micronutrients being potentially detrimental. Neonates are particularly vulnerable to infectious disease due to the immaturity of the immune system and modulation of nutritional immunity may play a role in this sensitivity. This review examines whether nutrition around the time of conception, throughout pregnancy, and in early neonatal life may impact on the developing infant immune system

    The tuberculosis profile of the Philippines, 2003ā€“2011: advancing DOTS and beyond

    No full text
    The Philippines is one of the highest tuberculosis (TB) burden countries in the world with nationwide coverage of directly observed treatment, short-course (DOTS) achieved in 2003. This study reports on the National TB Control Programme (NTP) surveillance data for the period 2003 to 2011. During this period, the number of TB symptomatics examined increased by 82% with 94% completing the required three diagnostic sputum microscopy examinations. Of the 1 379 390 cases diagnosed and given TB treatment, 98.9% were pulmonary TB cases. Of these, 54.9% were new smear-positive cases, 39.3% new smear-negative cases and 4.7% were cases previously treated. From 2008 to 2011, 50 030 TB cases were reported by non-NTP providers. Annual treatment success rates were over 85% with an average of 90%; the annual cure rates had an eight-year average of 82.1%. These surveillance data represent NTP priorities ā€“ the large proportion of smear-positive cases reflected the countryā€™s priority to treat highly infectious cases to cut the chain of transmission. The performance trend suggests that the Philippines is likely to achieve Millennium Development Goals and Stop TB targets before 2015

    Placebo use in vaccine trials: recommendations of a WHO expert panel.

    Get PDF
    Vaccines are among the most cost-effective interventions against infectious diseases. Many candidate vaccines targeting neglected diseases in low- and middle-income countries are now progressing to large-scale clinical testing. However, controversy surrounds the appropriate design of vaccine trials and, in particular, the use of unvaccinated controls (with or without placebo) when an efficacious vaccine already exists. This paper specifies four situations in which placebo use may be acceptable, provided that the study question cannot be answered in an active-controlled trial design; the risks of delaying or foregoing an efficacious vaccine are mitigated; the risks of using a placebo control are justified by the social and public health value of the research; and the research is responsive to local health needs. The four situations are: (1) developing a locally affordable vaccine, (2) evaluating the local safety and efficacy of an existing vaccine, (3) testing a new vaccine when an existing vaccine is considered inappropriate for local use (e.g. based on epidemiologic or demographic factors), and (4) determining the local burden of disease
    corecore