2,404 research outputs found

    Reverend Dr. John Dunmore Lang

    Get PDF

    SYSTEMS ENGINEERING AND ASSURANCE MODELING (SEAM): A WEB-BASED SOLUTION FOR INTEGRATED MISSION ASSURANCE

    Get PDF
    We present an overview of the Systems Engineering and Assurance Modeling (SEAM) platform, a web-browser-based tool which is designed to help engineers evaluate the radiation vulnerabilities and develop an assurance approach for electronic parts in space systems. The SEAM framework consists of three interconnected modeling tools, a SysML compatible system description tool, a Goal Structuring Notation (GSN) visual argument tool, and Bayesian Net and Fault Tree extraction and export tools. The SysML and GSN sections also have a coverage check application that ensures that every radiation fault identified on the SysML side is also addressed in the assurance case in GSN. The SEAM platform works on space systems of any degree of radiation hardness but is especially helpful for assessing radiation performance in systems with commercial-off-the-shelf (COTS) electronic components

    Connecting Mission Profiles and Radiation Vulnerability Assessment

    Get PDF
    Radiation vulnerability assessment early in spacecraft development is cheaper and faster than in late development phases. RGENTIC and SEAM are two software platforms that can be coupled to provide this type of early assessment. Specifically, RGENTIC is a tool that outputs descriptions of radiation risks based on a selected mission environment and the system’s electronic part portfolio, while SEAM models how radiation-induced faults in electronic parts propagate through a system. In this work, we propose a spacecraft evaluation flow where RGENTIC’s outputs, which are radiation vulnerabilities of electronic parts for a given mission, become inputs to SEAM, resulting in an automatic part-type template palette presented to users so that they can easily begin modeling the occurrence and propagation of radiation-induced faults in their spacecraft. In this context, fault propagation modeling shows how radiation effects impact the spacecraft’s electronics. The interface between these platforms can be streamlined through the creation of a SEAM global part-type library with templates based on radiation effects in part-type families such as sensors, processors, voltage regulators, and so forth. Several of the part-types defined in RGENTIC have been integrated into SEAM templates. Ultimately, all 66+ part-types from the RGENTIC look-up table will be included in the SEAM global part library. Once accomplished, the part templates can be used to populate each project-specific part library in SEAM, ensuring all RGENTIC’s part-types are represented, and the radiation effects are consistent between the two. The harmonization process between RGENTIC and SEAM begins as follows: designers input a detailed knowledge of their system and mission into RGENTIC, which then outputs a generic part-type list that associates each part-type with potential radiation concerns. The list is then downloaded in a SEAM-readable file, which SEAM uses to populate the initially blank project with the part templates that correspond to RGENTIC’s output. The final product is a system fault model using a project-specific radiation effect part library. The radiation effects considered in the part library are associated with three categories of radiation-environment issues: single event effects (SEE), total ionizing dose (TID), and displacement damage dose (DDD). An example part-type is the discrete LED, which has been functionally decomposed into input power and output light. It has a single possible radiation-induced fault that is associated with DDD, which causes degraded brightness and is observed on the output. Overall, designers will benefit from a coordination of these two tools because it simplifies the initial definition of the project in SEAM. This is especially the case for new users, since the necessary radiation models for their parts are available before modeling commences. Furthermore, starting from a duplicate of an existing project decreases the amount of time and effort required to develop project-specific models. Incorporating RGENTIC’s table of part-types resolves these issues and provides a streamlined process for creating system radiation fault models. Consequently, spacecraft designers can identify radiation problems early in the design cycle and fix them with lower cost and less effort than in later design stages

    A "superstorm": When moral panic and new risk discourses converge in the media

    Get PDF
    This is an Author's Accepted Manuscript of an article published in Health, Risk and Society, 15(6), 681-698, 2013, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/13698575.2013.851180.There has been a proliferation of risk discourses in recent decades but studies of these have been polarised, drawing either on moral panic or new risk frameworks to analyse journalistic discourses. This article opens the theoretical possibility that the two may co-exist and converge in the same scare. I do this by bringing together more recent developments in moral panic thesis, with new risk theory and the concept of media logic. I then apply this theoretical approach to an empirical analysis of how and with what consequences moral panic and new risk type discourses converged in the editorials of four newspaper campaigns against GM food policy in Britain in the late 1990s. The article analyses 112 editorials published between January 1998 and December 2000, supplemented with news stories where these were needed for contextual clarity. This analysis shows that not only did this novel food generate intense media and public reactions; these developed in the absence of the type of concrete details journalists usually look for in risk stories. Media logic is important in understanding how journalists were able to engage and hence how a major scare could be constructed around convergent moral panic and new risk type discourses. The result was a media ‘superstorm’ of sustained coverage in which both types of discourse converged in highly emotive mutually reinforcing ways that resonated in a highly sensitised context. The consequence was acute anxiety, social volatility and the potential for the disruption of policy and social change

    The ambivalent shadow of the pre-Wilsonian rise of international law

    Get PDF
    The generation of American international lawyers who founded the American Society of International Law in 1906 and nurtured the soil for what has been retrospectively called a “moralistic legalistic approach to international relations” remains little studied. A survey of the rise of international legal literature in the U.S. from the mid-19th century to the eve of the Great War serves as a backdrop to the examination of the boosting effect on international law of the Spanish American War in 1898. An examination of the Insular Cases before the US Supreme Court is then accompanied by the analysis of a number of influential factors behind the pre-war rise of international law in the U.S. The work concludes with an examination of the rise of natural law doctrines in international law during the interwar period and the critiques addressed.by the realist founders of the field of “international relations” to the “moralistic legalistic approach to international relation

    Methodology for Correlating Historical Degradation Data to Radiation-Induced Degradation System Effects in Small Satellites

    Get PDF
    When constructing a system-level fault tree to demonstrate device-to-system level radiation degradation, reliability engineers need relevant, device-level failure probabilities to incorporate into reliability models. Deriving probabilities from testing can be expensive and time-consuming, especially if the system is complex. This methodology offers an alternative means of deriving device-level failure probabilities. It uses Bayesian analysis to establish links between historical radiation datasets and failure probabilities. A demonstration system for this methodology is provided, which is a TID response of a linear voltage regulator at 100 krad(SiO2). Data fed into the Bayesian model is derived from literature on the components found within a linear voltage regulator. An example is presented with data pertaining to the device’s bipolar junction transistor (BJT)’s gain degradation factor (GDF). Kernel density estimation is used to provide insight into the dataset’s general distribution shape. This guides the engineer into picking the appropriate distribution for device-level Bayesian analysis. Failure probabilities generated from the Bayesian analysis are incorporated into a LTspice model to derive a system failure probability (using Monte Carlo) of the regulator’s output. In our demonstration system, a 96.5% likelihood of system degradation was found in the assumed environment

    An Analysis of Public Attitudes Toward the Insanity Defense

    Get PDF
    Results from a public opinion survey of knowledge, attitudes, and support for the insanity defense indicate that people dislike the insanity defense for both retributive and utilitarian reasons: they want insane law-breakers punished, and they believe that insanity defense procedures fail to protect the public. However, people vastly overestimate the use and success of the insanity plea. Several attitudinal and demographic variables that other researchers have found to be associated with people\u27s support for the death penalty and perceptions of criminal sentencing are also related to support for the insanity defense. Implications for public policy are discussed

    Highly Variable Taxa-specific Coral Bleaching Responses to Thermal Stresses

    Get PDF
    Complex histories of chronic and acute sea surface temperature (SST) stresses are expected to trigger taxon- and location-specific responses that will ultimately lead to novel coral communities. The 2016 El Niño-Southern Oscillation provided an opportunity to examine large- scale and recent environmental histories on emerging patterns in 226 coral communities distrib- uted across 12 countries from East Africa to Fiji. Six main coral communities were identified that largely varied across a gradient of Acropora to massive Porites dominance. Bleaching intensity was taxon-specific and was associated with complex interactions among the 20 environmental variables that we examined. Coral community structure was better aligned with the historical temperature patterns between 1985 and 2015 than the 2016 extreme temperature event. Addi- tionally, bleaching responses observed during 2016 differed from historical reports during past warm years. Consequently, coral communities present in 2016 are likely to have been reorganized by both long-term community change and acclimation mechanisms. For example, less disturbed sites with cooler baseline temperatures, higher mean historical SST background variability, and infrequent extreme warm temperature stresses were associated with Acropora-dominated communities, while more disturbed sites with lower historical SST background variability and frequent acute warm stress were dominated by stress-resistant massive Porites corals. Overall, the combination of taxon-specific responses, community-level reorganization over time, geographic variation, and multiple environmental stressors suggest complex responses and a diversity of future coral communities that can help contextualize management priorities and activities

    Simulating complex social behaviour with the genetic action tree kernel

    Get PDF
    The concept of genetic action trees combines action trees with genetic algorithms. In this paper, we create a multi-agent simulation on the base of this concept and provide the interested reader with a software package to apply genetic action trees in a multi-agent simulation to simulate complex social behaviour. An example model is introduced to conduct a feasibility study with the described method. We find that our library can be used to simulate the behaviour of agents in a complex setting and observe a convergence to a global optimum in spite of the absence of stable states

    Large Geographic Variability in the Resistance of Corals to Thermal Stress

    Get PDF
    Aim: Predictions for the future of coral reefs are largely based on thermal exposure and poorly account for potential geographic variation in biological sensitivity to ther- mal stress. Without accounting for complex sensitivity responses, simple climate ex- posure models and associated predictions may lead to poor estimates of future coral survival and lead to policies that fail to identify and implement the most appropri- ate interventions. To begin filling this gap, we evaluated a number of attributes of coral taxa and communities that are predicted to influence coral resistance to thermal stress over a large geographic range. Location: Western Indo-Pacific and Central Indo-Pacific Ocean Realms. Major taxa studied: Zooxanthellate Scleractinia – hard corals. Methods: We evaluated the geographic variability of coral resistance to thermal stress as the ratio of thermal exposure and sensitivity in 12 countries during the 2016 global-bleaching event. Thermal exposure was estimated by two metrics: (a) histori- cal excess summer heat (cumulative thermal anomaly, CTA), and (b) a multivariate index of sea-surface temperature (SST), light, and water flow (climate exposure, CE). Sensitivity was estimated for 226 sites using coordinated bleaching observations and underwater surveys of coral communities. We then evaluated coral resistance to ther- mal stress using 48 generalized linear mixed models (GLMMs) to compare the poten- tial influences of geography, historical SST variation, coral cover and coral richness. Results: Geographic faunal provinces and ecoregions were the strongest predic- tors of coral resistance to thermal stress, with sites in the Australian, Indonesian and Fiji-Caroline Islands coral provinces having higher resistance to thermal stress than Africa-India and Japan-Vietnam provinces. Ecoregions also showed strong gradients in resistance with highest resistance to thermal stress in the western Pacific and Coral Triangle and lower resistance in the surrounding ecoregions. A more detailed evaluation of Coral Triangle and non-Coral Triangle sites found higher resistance to thermal stress within the Coral Triangle, associated with c. 2.5 times more recent historical thermal anomalies and more centralized, warmer, and cool-water skew SST distributions, than in non-Coral Triangle sites. Our findings identify the importance of environmental history and geographic context in future predictions of bleaching, and identify some potential drivers of coral resistance to thermal stress. Main conclusions: Simple threshold models of heat stress and coral acclimation are commonly used to predict the future of coral reefs. Here and elsewhere we show that large-scale responses of coral communities to heat stress are geographically variable and associated with differential environmental stresses and histories
    • 

    corecore