

Methodology for Correlating Historical Degradation Data to Radiation-Induced Degradation System Effects in Small Satellites

Richard H. Nederlander, Arthur F. Witulski, Gabor Karsai, Nag Mahadevan, Brian D. Sierawski, Ronald D. Schrimpf, and Robert A. Reed *Vanderbilt University*

> Michael J. Campola, Kaitlyn L. Ryder, Rebekah A. Austin Goddard Space Flight Center (GSFC)

This work is sponsored by NEPP Grant and Cooperative Agreement Number 80NSSC20K0424

08/07/2022

VANDERBILT School of Engineering

QubeSat – tech demonstration mission of quantum gyroscopes in space University of California, Berkeley

- Important for an engineering team to have a general understanding of their system's failure probability
- Multiple rounds of radiation testing can be prohibitive due to test facilities' costs (costing >\$1k per hour)
- We propose a method for deriving a preliminary system-level failure probability from component failure data.
 - Device-level failure probabilities from historical device data
 - Generates system-level failure probability through a Monte Carlo process

Linear Voltage Regulator (LM317KCS) Texas Instruments

- **Objective**: Use Bayesian analysis to derive failure probabilities from radiation databases
- **Purpose**: Useful for small satellite applications with short development timeframes and significant utilization of COTS components
- **Case example**: A selected commercial BJT (2N2222) in a self-designed linear voltage regulator was found to have a high degradation probability

Methodology

For Extracting System-Level Probability from Component-Level Degradation

Bayesian Analysis For Estimation of Component-Level Probabilities

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

 $Posterior = \frac{Likelihood * Prior}{Normalization} \#$

Kernel Density Estimation (KDE) For Component Probability Distribution Extraction

$$\hat{f}(x) = \sum_{observations} K\left(\frac{x - observation}{bandwidth}\right)$$

$$n^{\frac{-1}{(d+4)}}$$

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\sigma}^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(\mathbf{x}-\boldsymbol{\mu})^2}{2\sigma^2}} \#$$

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \sigma^2) \propto e^{-\frac{(\mathbf{x}-\boldsymbol{\mu})^2}{2\sigma^2}} \#$$

VANDERBILT School of Engineering

Monte Carlo Method For System Probability Distribution Extraction

Inverse Cumulative Density Function (ICDF) 6 BJT's GDF based on LTspice's Random Number Generator (Input) 5 4 BJT's GDF 3 2 1 0.0 0.2 0.4 0.6 0.8 1.0 CDF

Experimental Radiation Database 2N2222

- GDF = Gain Degradation Factor
 - Ratio of post-rad gain to pre-rad gain
- For 100 krad(SiO₂), the distribution is approximately Gaussian
- For 300 krad(SiO₂) and 1 Mrad(SiO₂), appears more like a multi-modal distribution
- We approximated the 100 krad(SiO₂) as a Gaussian

R. Ladbury and B. Triggs, "A Bayesian Approach for Total Ionizing Dose Hardness Assurance," IEEE Trans. Nucl. Sci., vol. 58, no. 6, pp. 3004–3010, Dec. 2011.

VANDERBILT School of Engineering

Simulation Setup

Using LTspice for Monte Carlo Simulation of System of Degradation

 ICDF
 ITSpice

 Component-level
 LTSpice

 System-level

Figure represents random sampling of the ICDF of components with TID degradation using the Monte Carlo feature in LTspice to produce a PDF of system behavior at the output

Simulation Results Histogram of LTspice's Simulation Results

School *of* Engineering –

VANDERBILT

Distribution Obtained from KDE analysis of LTspice output histogram

Conclusions

