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Abstract The concept of genetic action trees combines action trees with genetic al-
gorithms. In this paper, we create a multi-agent simulation on the base of this concept
and provide the interested reader with a software package to apply genetic action trees
in a multi-agent simulation to simulate complex social behaviour. An example model
is introduced to conduct a feasibility study with the described method. We find that
our library can be used to simulate the behaviour of agents in a complex setting and
observe a convergence to a global optimum in spite of the absence of stable states.

Keywords Multi-agent system · Genetic algorithm · Action trees · Social simulation

1 Introduction

Computer simulations open up a new way of analysing complex social and economic
systems. The simulation stands out against the classical differentiation of deductive
and inductive methods in economic theory: In simulations, explicit conditions are
formulated in a formal language. So it is done in deductive procedures. However,
simulation results are not interpreted through proofs but through the inductive eval-
uation of the data (Axelrod 1997). The modularity of a computer programme allows
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data to be harvested under controlled conditions and precise presuppositions, just like
in an experiment.

An example of social simulations that has become classical in recent times is the
finite cellular automaton which was developed by von Neumann and Ulam (von Neu-
mann 1996). At first, it was used for an attempt to model the biological process of
self-reproduction (Conway’s game of life (Gardner 1970, 1971)). Another field of ap-
plication of the cellular automaton is the analysis of complex technical and physical
processes.

In social sciences, cellular automata have been used to create computer models as
examples of social systems. They have often been implemented in order to demon-
strate social interdependencies such as segregation effects in populations (Schelling
1969, 1971). Such emergent phenomena evolve through the fact that through their
individual actions, agents generate circumstances which were not intended by them.
Other examples for that are the origin of traffic jams (Nagel and Schreckenberg 1992)
and the collapse of financial markets. Such relationships between the individual ac-
tions on the micro-level and the collective effects on the macro level describe a funda-
mental class of problems in social sciences which can very well be modelled through
computer simulations.

Applications of computer simulations in economic sciences can often be found in
the context of game theory. An important example is the theory of reinforcement
learning developed by the biologist Harley (1981), which was intensely analysed
by (Roth and Erev 1995; Erev and Roth 1998). Recent learning models such as
Experience Weighted Attraction by Camerer also belong in this field (Camerer
and Teck-Hua 1999). In simple game situations, experimental data could well
be prognosed with the aid of such learning algorithms (Roth and Erev 1995;
Selten et al. 2003). Obviously, there is also a reinforcement structure in the GAT
algorithm presented by us in this work. However, most applications of reinforcement
algorithms in economic literature use an atomic representation of strategies. This
is the main difference to our approach. In the present paper, the representation of
strategies—therefore called actions—is motivated by concepts of analytic language
and action philosophy (Bratman 1987; Davidson and Harman 1973; Mele 1997;
Searle 1983). According to some of these concepts, we used common language to
consider the complexity and fussiness of actions.

However, in the approaches of learning algorithms based on game theory, many
characteristics of social agents are not taken into account. Thus, many intentional
attitudes (beliefs, desires, intentions), the alteration of preferences or the social con-
text of agents is only rudimentary represented. Communication, adaptive abilities or
a representation of the agents’ knowledge are nearly completely missing. Apart from
that, agents with heterogeneous behaviour patterns depending on the specific situa-
tion are important for the adequate depiction of complex social systems. These cannot
be recorded by simple learning algorithms. Due to this criticism, multi-agent systems
have developed out of the field of distributed artificial intelligence.

Software entities which differ from the usual learning algorithms in the way that
they autonomously develop their own strategies for the coping with tasks are called
agents. Agents do not own a merely trivial control of their actions. They use and
administer knowledge, interact with other agents and possess the ability to cooperate
and communicate. Agents perceive their environment and react to changes in their
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surroundings. They own adaptive abilities and learn from experience and they do
not only react to changes in their environment but take the initiative and affect their
environment through their actions.

Among the first and probably best analysed architectures of multi-agent systems
are the BDI systems (belief–desire–intention) whose development was started by
Bratman (1987) in the middle of the 1980s. BDI systems are examples of top-down
models. This means that the agents’ intentional states, beliefs, desires, and intentions,
are explicitly represented through the BDI structure. Epistemic, modal, or temporal
logics are used for the manipulation of the BDI structure. Nevertheless, the imple-
mentation of these systems is usually very laborious due to the complex logical cal-
culus.

A possible solution is offered by bottom-up modelling on the basis of neural net-
works or, as in this paper, by genetic algorithms (Holland 1975). This means that
the entities relevant to the model, such as the characteristics of actions or intentional
attitudes, are implicitly represented by a codification like binary sequences. On the
basis of the codification, fundamental mathematical operations substitute the logical
calculi.

Although widely unnoticed by social and economic scientists, machine learning
algorithms have primarily become established as solutions for problems in engineer-
ing and information sciences, for instance in process management, traffic sciences
and logistics, as well as on the Internet as a virtual service provider and in computer
games (Weiss 1999). Thus, a new approach for the modelling of actions in multi-
agent systems with a machine learning algorithm shall now be exemplary analysed in
a social context in this paper. In contrast to this, game theory normally deals with the
ontological structure of actions in a reductionist way. Through strategies, actions are
mainly represented as atomic mathematical entities in economic models without any
operational semantics. At best, characteristics of actions manifest themselves in their
evaluation through the abstract preference relations or utility functions. We take the
view that a linguistically motivated analysis of actions offers a deeper insight in the
formal structure of actions in order to model those operational and procedural quali-
ties of actions which are important for computer simulations. The terminology of ana-
lytical philosophy, especially analytical theories of action (Austin 1975; Searle 1971;
Chisholm 1964; Davidson 1980), serves as a basis of the concept formation.

Multi-agent based simulation is a branch of distributed artificial intelligence that
builds the base for computer simulations which connect the micro- and macro-level
of social and economic phenomena like cooperation, competition, markets and social
networks dynamics. The dynamics of social and economic systems manifest them-
selves in the formation, change, and disappearance of actions. For this reason, actions
of many diverse forms appear in the application of computer simulations on eco-
nomic and social processes. That creates the question how actions can be represented
in computer simulations. In this paper, a general and uniform approach of modelling
an as extensive class of actions as possible is analysed. On the one hand, this concept
is supposed to take into consideration the diversity of actions, on the other to be op-
erationally manageable nevertheless for the modelling of simulation models such the
multi-agents system.

Searching for an integral model of actions, one inevitably encounters the question
which qualities of actions separate these from different entities. This can be expressed
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the most forcefully with the ontological question “What are actions?” Due to the
heterogeneity and fundamental fuzziness of actions, one can give only incomplete
answers to this. Therefore, we will attempt to approximate the ontological question
through an epistemic and an evolutionary translation:

1. How can actions be described through a general model that is suitable for multi-
agent simulations?

2. How can the formation and disappearance of actions be described in this model
algorithmically?

Our approach follows the method of Pitz (2000). In the following, we briefly sum
up the facts of this methodology. The interested reader can find another introduction
with a simple example to this topic in Pitz and Chmura (2005). We extend their work
by introducing a software capable of doing multi-agent based simulations with ge-
netic action trees. It is not the aim of this paper to compare quantitative results with
empirical data. Rather, the statistical evaluation of the simulations serves to prove en-
dogenous qualitative changes in the behaviour of the agents in the simulations. The
main aim is to exemplify the method of genetic action trees with a complex examples
and to conduct a feasibility study with it.

The remainder of this article is structured as follows. Firstly, we draw up a generic
model for genetic action trees. The next section deals with technical issues of the use
of the software platform. After that, we introduce a simple example model and let
our computer platform simulate it. The section closes with a short discussion of some
details of the results of the simulation. In the final section, we summarise our results
and conclude.

2 Genetic action trees

In this section, we introduce the basic functionality of genetic action trees. The details
are left out, but the interested reader may find it in (Pitz and Chmura 2005).

2.1 The epistemic question

In this section, we answer the question how actions can be described through a gen-
eral model that is suitable for multi-agent simulations.

2.1.1 Action types

In order to find answers to the epistemic question concerning a uniform system of de-
scribing actions, it is helpful to make use of some of the concepts used in analytical
theories of action. For a definition of these fundamental notions in theories of action,
it is worthwhile to examine the way in which actions are represented in common
speech. Descriptions of actions such as “Last week Peter drank 2 bottles of wine with
his two colleagues in his favourite pub.” First of all suggest understanding actions as
concrete singular objects to which a context of limited expansion in space and time
can be attached. But if we consider actions to be singular entities in this way, we are
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confronted with the problem of their repeatability and countability. It is therefore ad-
visable to take a further step of abstraction and to subsume similar concrete actions as
equivalence classes, so-called action types. Hence, the repetition of an action should
be understood as the carrying out of an equivalent but indeed different action. It is
exactly the analysis of iterations of similar actions which plays an essential role in
computer simulations. A certain quantity of action types is called action space.

2.1.2 Action attributes

Just as the ontological question of the nature of actions cannot be solved generally,
likewise the question of the characterisability of the equivalence relation cannot fi-
nally be answered but only in regard to the respective model. Instead of a formal
definition of the equivalence relation for action types, we use quasi-deictic denota-
tions of action types taken from common speech: action types can be denoted by
using the infinitive form of verbs “to walk, to buy, to produce, to kill”, etc. and a set
of free variables. The free variables serve as a parameter for references of space and
time as well as for the actors and objects affected by the processes when the action is
performed. Likewise, we will treat quantitative and qualitative action attributes, such
as “5 m/s” for “to walk” and “maliciously” for “to kill”, etc. as free variables. In
the following, we will call these free variables action attributes. Finally, we will un-
derstand certain preferences agents might have with regard to actions, such as “with
pleasure” for “to travel” and “reluctantly” for “to drive a car”, as action attributes in
our model.

Talking about actions, it is naturally impossible to specify all free variables
through an explicit allocation. Therefore, we will restrict ourselves in the notation
to those variables which are essential, i.e. relevant for the model. The number and
sort of free variables of an action type thus depends on the model. The more detailed
the model, the higher the number of parameters and the more differentiated the range
of the variables. The execution of an action belonging to an action type formally
means the instantiation of all free variables.

Notation

• If H([i1, . . . , in]) is an action type with a list of free variables, let H([i1, . . . , in]:
[k1, . . . , kn]) or in short H(k1, . . . , kn) be the execution of an action of type H with
the allocation [k1, . . . , kn] of the free variables [i1, . . . , in]. Due to better legibility,
the square brackets [ ] are sometimes left out.

• We use the meta-variable “_” for a set of variables which is not completely speci-
fied.

Example 1 (Action types)

• to eat([i]: [Peter]); Possible semantics: Peter is eating.
• to drink([i,w]:[Peter,wine]); Possible semantics: Peter is drinking some wine.
• to buy from([i, j, b, g]:[Peter,Paula,10 Euro,book]); Possible semantics: Peter buys

a book from Berta for 10 Euro.
• to offer([i, k, J ]:[Paula,wine,consumer]); Possible semantics: Paula offers the

product wine to a set J of consumers.
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Fig. 1 Unbranched action tree

2.1.3 Action trees

On certain action spaces, the preposition “by” induces a semi-order (<by) (Goldman
1971). Figure 1 shows an example for an unbranched action tree.

Such action spaces can be arranged as a tree diagram using the most general action
type action(i,_) and a set of free variables “_” (see Fig. 1). Here the semantics of
action(i,_) be that “an agent i carries out any kind of action.” This action is specified
from the root to a leaf by the allocation of more and more of the free variables.

2.1.4 Binary decision-making actions—intentional degree

Decisions can be understood as special forms of action. We thus suggestively call
them decision-making actions. In an action tree, decision-making actions possess at
least two followers with regard to the < by-relation.

In the simulations described in this paper, we restrict ourselves to binary decisions,
i.e. decisions with two alternatives (see Fig. 2). H is a binary decision-making action
with the nodes H1 and H2 which can be carried out by the agent in principle. In order
to depict the agent’s preference regarding the two alternatives, we use an intentional
degree of H1. The intentional degree of H1 is represented by a real number dH1 ∈
[0,1] ∪ {2}. The selection algorithm at the node H can be described as follows: One
chooses a random number c from a finite subset C ⊆ [0,1]. Then H1 is chosen exactly
then if c < dH1 is valid. Thus, changes in behaviour result from a modification of the
set C. With dH1 = 0 (dH1 = 2), the node H1 (H2) can be eliminated in the model. The
intentional degree dH1 implicitly also determines the intensity of the wish to carry
out H2. The intentional degree describes what the agent wants to do. We understand
dH1 as the action attribute belonging to the decision-making action H .

In Fig. 2, let dH1 denote the intentional degree of the left node, i.e. the intensity of
the wish to carry out the left node of the tree.

2.1.5 The selection of an action type

The selection of an action type by an agent can be seen as the walk through the action
tree from the root to a leaf. In doing so, the agent chooses one of the two subsequent
nodes depending on the intentional degree, as described in Sect. 2.1.3. Occasionally,
the agents get instructions from other agents which they are forced to follow. For
instance, Peter can have an order to go to Paris. The free variable “destination” is
then already allocated with “Paris.” In this case, Peter’s selection process starts at
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Fig. 2 Action tree with binary decision-making action

the node where free variables appear for the first time. In the example of Fig. 2, no
decisions remain to be taken by the agent in this case. In the following, we will restrict
ourselves to action trees with the following qualities:

1. Let the action tree be completely defined with regard to the actual model, i.e. each
node exhaustively describes one action regarding to the given model. If a leaf of
an action tree is reached, all variables which are necessary for the performance of
the action are allocated.

2. Due to better legibility, we will only analyse action trees with two nodes at maxi-
mum in this introduction. Later on in Sect. 3, a more complex action tree is drawn
up and discussed.

3. If an agent is unable to carry out any node, no action is conducted. The process of
selecting an action will be restarted later on.

2.2 The evolutionary question—an algorithm for the modification of action
attributes

In this section, we answer the question how the formation and disappearance of ac-
tions can be described algorithmically in this model.

2.2.1 Genetic action trees

The dynamics of action trees can be described through the alteration of the allocation
of action attributes. In order to conduct these alterations as methodically coherently
as possible, one can represent allocations of action attributes as sets of binary series.
In the following, the allocation of an action attribute coded through the binary series
will also be called the gene of an action attribute. A set of genes is called a gene pool.
The alteration of the allocations results from the genetic algorithms operating on the
gene pool of the action attribute (see Sect. 2.2.5).

Definition 1 (Genetic action trees) A genetic action tree G(T ) for a set of agents I

has the following structure:

• T is an action tree.
• ∀i ∈ I ∧ ∀H [A] ∈ T ∧ ∀a ∈ A let C(i,A) ⊆ {0,1}n be the gene pool of an action

attribute a of the action type H and of the agent i.
• ∀H ∈ T of a decision-making action and the subsequent nodes H1 and H2, there

is an intentional degree d ∈ [0,1] ∪ {2} and a potentially empty set of exogenous
conditions �H1 and �H2 , which have to be fulfilled for the specific agent i so that
H1 or H2 can be chosen by i.
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• ∀c(i, a) ∈ C(i, a) let φ(c(i, a)) ∈ R be the fitness of c(i, a). After the execution of
an action, the fitness of c(i, a) is modified with regard to the results of the action.

• ∀c(i, a) ∈ C(i, a) let δ(c(i, a)) be the semantics of c(i, a).

In the next section, the meaning of the terms introduced just now shall be exemplified
on the basis of how they are used. First, we will describe the choice algorithm of the
actions through the agents.

2.2.2 The choice of the actions through the agents

After having been activated, each agent i ∈ I checks if the list of instructions for
actions the agent might have received contains any elements. In the later on described
model, all instructions for actions are carried out successively first in first out. If no
instructions for actions have been received by the agent i, i determines which action
has to be carried out by following a path [H1, . . . ,Hn] of an action tree from the root
H1 to a leaf Hn. While doing so, all attributes of the action types [H1, . . . ,Hn] are
successively randomly allocated with coded values c(i, a) ∈ C(i, a) on the basis of an
equal distribution. Let H⊗(i, dH1) be a decision-making action and dH1 ∈ [0,1] ∪ {2}
the intentional degree for the left node. If the agent is confronted with a decision-
making action H⊗(i, dH1), the subsequent nodes H1 and H2, for which �H1 or rather
�H2 have been violated, are eliminated. �H1 and �H2 are exogenous conditions
specific to the model which guarantee the consistency and coherence regarding the
agent i’s abilities in its environment. Thus, the exogenous conditions define which
actions can be carried out by i.

If it is the case that two nodes remain at the node H⊗(i, dH1) for i, the agent is
confronted with two alternative actions. We describe the semantics of the decision-
making algorithm:

Let β : {0, . . . ,2n − 1} → {0,1}, n ∈ N , be the natural bijection which assigns
each binary series [x1, . . . , xn] ∈ {0,1}n with

β(k) = [x1, . . . , xn] ↔ k =
n∑

i=1

xi2
i−1.

Let δ : {0, . . . ,2n − 1} → {0,1} be defined by

δ(k) = k

2n − 1

for each k ∈ {0, . . . ,2n − 1}. Let C(i, dH1) ⊆ {0,1}n be the gene pool of the agent
i with regard to the intentional degree dH1 . The left node is chosen exactly then if
δ(c(i, dH1)) < dH1 holds, while c(i, dH1) is chosen randomly from the set C(i, dH1).
Thus, the genome specifies the threshold for a decision.

It is conceivable that an agent receives instructions for actions from another agent.
That means precisely that action attributes are determined through another agent’s
instruction. The decision-making process then starts at a node H1, 1 < t ≤ n, at which
free variables appear for the first time, if all the conditions �H of all preceding nodes
H have been fulfilled. If a condition is violated, the instruction will not be carried
out.
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When the agent i has reached the root Hn of the action tree, all attributes are al-
located with coded values. The action type is carried out in accordance with theses
allocations and each allocation c(i, a) ∈ C(i, a) with which the action type was car-
ried out is judged through the change in its fitness value φ(c(i, a)) due to the results
of the action.

2.2.3 The evaluation of an agent’s action

After the agent’s run through an action tree, all attributes which are necessary for
the specification of an action within the context of the model are clearly defined.
Each gene has been assigned a concrete specification through the semantics δ which
belongs to the actual model. After the determination of the necessary parameters, the
action can now be carried out in the model according to the semantics δ. Actions
change the agent’s environment. Those changes are called the results of an action.
The results of actions form the basis of the evaluation of actions or more precisely
the evaluation of the genes of action attributes through the alteration of the fitness
value φ.

2.2.4 Changes in the characteristic of action attributes

Genetic algorithms are used for the simulation of changes in action spaces. In the
following, specific genetic algorithms which have proved useful in the case of the
action spaces will be discussed. If a gene pool C(i, a) of an agent i and an action
attribute a is changed, this can evoke changes in the behaviour of agent i. Let J ⊂ I

be a subset of agents and a an action attribute. Let

Cj (a) :=
⋃

i∈J

C(i,A)

be the common gene pool of the agents i ∈ J of a. If J contains more than one agent,
the intersubjective changes in behaviour can thus be simulated. For the application
example analysed in this paper, the gene pool CI (a) was used. Here is valid: for all
agents i and action attributes C(i, a) it contained exactly one element.

2.2.5 The genetic algorithms for attributes of the action types

The genetic algorithms consist of mutation, selection and crossover. In the model
described later on, the genetic algorithms were used on the sets CJ (a) when the
actions belonging to the attribute a had been carried out 10 times.

• Selection and mutation. Each gene c(i, a) ∈ CJ (a) is changed with the probability
pmut(c(i, a)) at n pairwise different places which have been chosen randomly. If
the gene c(i, a) of the agent i is changed through mutation, the original gene is sub-
stituted with its mutant. pmut(c(i, a)) is here proportional to the fitness φ(c(i, a)).
Thus, the substitution of a gene with its mutant is the more likely the smaller the
fitness of the gene is.
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Fig. 3 Schematic display of the crossover

• Cross over. On the sets CJ (a) a crossover was carried out on 5% of the elements
of CJ (a). A crossover is presented as an example in the following figure. The cut
S is determined randomly on the basis of uniform distribution. This is shown in
Fig. 3.

The model described here is limited to these three genetic operators. It should
not be a problem to extend the algorithm to contain more operators like blocking,
unblocking, techniques like simulated annealing, and the like.

There exist a variety of different approaches to utilise genetic algorithms in multi-
agent systems. Other well-discussed applications of genetic algorithms are genetic
programming and classifier systems. The basic idea of genetic programming is well
described in (Koza 1990). The genes are represented by syntax trees of simple com-
puter programs. The mutation has to respect the syntactical correctness of the genes.
The crossover could be interpreted as exchange of subprograms. The fitness function
is updated after running the programs. The key difference from genetic programming
to our approach is that in algorithms using genetic programming, new types of action
can arise. This is not always desired. In genetic action trees, all possibilities of action
are pre-specified in a tree structure. Actions can be eliminated, but it is not possible
to dynamically create new ones which haven’t been defined in before. A different
approach are learning classifier systems, which where described by (Holland 1975)
as adaptive systems—like autonomous agents—that are able to categorise their envi-
ronment. The kernel of classifier systems are “condition–action-rules” like “IF RE-
CEIVE(Input) THEN Create(Output)” coded as binary sequences. The rules could
be modified by genetic algorithms. In the genetic action trees, there are analogous
mechanisms to that: a tree structure replaces the “IF. . .THEN” structure.

2.3 The GATKernel software package

The beforehand described algorithms have already been implemented as a computer
programme. The software can be obtained free of charge in the Internet.1 It is written
in Java and thus should be runnable on any operating system. Commented source
code for the exemplary model described in the next section is included in this pack-
age.

1http://www.bonneconlab.uni-bonn.de/econlab/individual.php?id=57. Note that the reference implemen-
tation makes use of Andy Khan’s Java Excel API, available at http://jexcelapi.sourceforge.net/.
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3 An exemplary application of the genetic action tree kernel

So far, we explained how the genetic action tree approach works and how one can
implement a multi-agent system with the GATKernel. In this section, we draw up a
not too demure example model to illustrate a way to apply the kernel to a specific re-
search question. It is important to view the model described hereafter not as a serious
research device but as a feasibility study for a complex global organisation problem.
In this application, we deal with a alcoholic party. Note that this is not the only in-
vestigation of the ability of people to socially organise themselves in the context of a
get-together. For example, Arthur (1994) introduced the so-called El Farol bar prob-
lem to game theory. This problem deals with a finite population of agents which want
to visit the El Farol bar in Santa Fe, New Mexico. If more than 60% of the popu-
lation go to the bar, it is too crowded to have fun for each agent and they all have
less pleasure than if they stayed at home. On the other hand, if less than 60% of the
population attend this bar, they all have a better time than at home. Another example
would be the NetLogo party model by (Wilensky 1997). He investigates the grouping
behaviour of male and female cocktail party guests. We create a setting in which a
finite number of agents attend a party. Each one of the agents has to meet conflicting
targets.

3.1 Our world

Consider an anonymous human being visiting a party in a not so distant world. Let’s
furthermore assume that this party is a rather boring place to be, so that the only
joy of our person is to gain and maintain an optimum level of alcoholic intoxication.
Several implications of this fact must be taken into account:

• There are only finite stocks of alcoholic beverages (which are limited to beer and
a high spirit liquor, referred to as schnaps) and coffee. Thanks to the favourable
position of the civilisation our individual lives and celebrates in, water supply is
not limited.

• As a natural protection measure, the party visitor will fall asleep at once if the
blood alcohol level exceeds a certain border. To counter such dire consequences he
could simply suspend to consume beer and schnaps until the blood alcohol level
decreases to a more acceptable extent. An even better alternative to this behaviour
would be to drink coffee—in our individual’s world, the black gold has this almost
magic feature to lower the blood alcohol level.

• Even in this fabulous world, alcohol drinking entities will experience a hangover
the day after. The quality of this hangover is a measure of consumed raw spirits
and consumed liquids. Unfortunately, coffee dehydrates the consumer’s body.

• If the considered individual neither consumes beer nor schnaps, the blood alcohol
level drops by a small amount.

The objectives of our friend are now to stay as close as possible to the optimum
blood alcohol level, not to fall asleep (as this would waste precious time he could
spend celebrating), and to minimise the after day’s hangover.



366 T. Chmura et al.

3.2 The model

The situation described in the previous section is an ideal testing vehicle for genetic
action trees. Let one party visitor of all guests be one agent in the sum of all agents.
To investigate the drinking behaviour of all agents and to find concluding hints for an
optimum drinking strategy, we could easily utilise genetic algorithms.

There are several decisions our individual can take. Figure 4 shows a decision tree
which was used to derive a genetic action tree. The nodes have only one gene each,
the decision gene. The actual decisions, actions, and their implications are as follows:

• Node H0: The agent has to make a decision whether to consume alcohol or not.
If the agent is asleep (Si = 1) or if there is neither beer nor schnaps left (σb

i =
0 ∧ σ s

i = 0), the child node H2 is not valid and the next node is H1 by default. To
calculate the fitness of a decision in a given period, several factors must be taken
into account:

1. The failure to eliminate the negative delta between actual (Bi ) and optimum
(B∗) blood alcohol level will be punished if Bi < B∗. In more formal terms, we
need to reduce the fitness by min{0;Bi −B∗}. Since an evaluation of the fitness
is done only in every mth period, we will have to sum up this delta over the last
m rounds.

2. The fitness will be dramatically reduced if the agent falls asleep—this is the
case if Si = 1.

3. Furthermore the agent’s ability to reduce the expected hangover will be re-
warded. Hangover is defined as the relation of total consumed raw spirits (Ai )
to total consumed liquids (Li ): Ai/Li . To judge the hangover adjustment in the

Fig. 4 The tree representing the choices which lead to certain actions
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last m periods, we will add

(
Ai−m

Li−m

− Ai

Li

)

to the fitness of the decision gene. The denominators in this term will never
equal zero, because we assume that every party guest enjoys one unit of water
in the beginning.

The fitness function for the decision gene is a sum of the terms mentioned above
weighed by coefficients μj ∀j ∈ {1,2,3}:

φ(c(i, dH0)) = μ1

i∑

j=i−m

min{0;Bj − B∗} − μ2

i∑

j=i−m

Sj + μ3

(
Ai−m

Li−m

− Ai

Li

)
.

(1)

• Node H1: If the agent decided not to consume any alcohol there are several choices
left. The child H3 gets eliminated if the agent is asleep; otherwise he has to de-
termine whether he wants to drink non-alcoholic beverages or not. This also has
effect on the progression of the blood alcohol level because coffee will reduce it by
a small amount, so we simply use (1) as the fitness function for the decision gene
of H1:

φ(c(i, dH1)) = μ1

i∑

j=i−m

min{0;Bj − B∗} − μ2

i∑

j=i−m

Sj + μ3

(
Ai−m

Li−m

− Ai

Li

)
.

(2)

• Node H2: Now the agent has to choose his preferred kind of drink. He will be
forced into having one special kind of beverage if there’s nothing more left of the
other. The fitness of this gene is affected by the expected hangover reduction and
the improvement of the negative delta between actual and optimum blood alcohol
level:

φ(c(i, dH2)) = μ1

i∑

j=i−m

min{0;Bj − B∗} + μ3

(
Ai−m

Li−m

− Ai

Li

)
. (3)

• Node H3: This node corresponds to the decision on the type of non-alcoholic bev-
erage the agent is about to drink. Since the coffee stock is limited it might occur
that no more coffee is left. In this case, the child node H8 is not a valid successor
of H3. The lack of an appropriate amount of consumed liquids will invalidate H8,
too. The influences of the decision in H3 are limited to hangover reduction and
decrease of the blood alcohol level. Thus, the fitness function is similar to (3):

φ(c(i, dH3)) = μ1

i∑

j=i−m

min{0;Bj − B∗} + μ3

(
Ai−m

Li−m

− Ai

Li

)
. (4)
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• Node H4: There is a special issue concerning this node: Though it is not a leaf of
the tree, there is usually no decision to take because an agent would never volun-
tarily fall asleep. This fact is modeled by setting the intentional degree to dH9 := 2.
By default, node H10 is never reached. If the agent is asleep (Si = 1), node H9 gets
invalidated. In this case H10 is the only successor of this node, this is the only way
to reach node H10. A fitness function is not necessary since there is no decision to
make at H4.

• Node H5: At this leaf the agent will drink one unit of schnaps after ensuring—in the
course of the nodes previously executed in the course of the action tree—that he is
not asleep and that there is enough schnaps left. This will have some consequences.
Next period’s blood alcohol level will be increased by the schnaps (5), the schnaps
stock will be decreased by the amount of one unit of schnaps (6), the variables for
consumed liquids (7) and consumed raw spirits (8) will be adjusted, and the agent
will fall asleep if the maximum level of intoxication � is exceeded (9). Note that
if any of next period’s variables is not defined in the leaf nodes, it defaults to the
values of the current values.

Bi+1 := Bi + βs, (5)

σ s
i+1 := σ s

i − ls , (6)

Li+1 := Li + ls , (7)

Ai+1 := Ai + as, (8)

Si+1 :=
{

0 if Bi+1 ≥ �,
1 if Bi+1 < � .

(9)

• Node H6: The agent decided to drink beer. In our model, drinking beer is very
similar to drinking schnaps—only some parameters differ in height. This action is
carried out in this leaf node:

Bi+1 := Bi + βb, (10)

σb
i+1 := σb

i − lb, (11)

Li+1 := Li + lb, (12)

Ai+1 := Ai + ab, (13)

Si+1 :=
{

0 if Bi+1 ≥ �,
1 if Bi+1 < �.

(14)

• Node H7: Our party guest has decided to drink water. This will not have influence
on anything but the hangover quality and the blood alcohol level:

Bi+1 := Bi + βn, (15)

Li+1 := Li + ln. (16)

• Node H8: This leaf represents the action of drinking coffee. Coffee reduces the
blood alcohol level by −βc. Besides this unusual consequence, the consume of
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coffee dehydrates occurs and the amount of consumed liquids by −sc. Note that
βc and sc are negative constants. Due to quantity restrictions we will also have to
decrease the amount of available coffee:

Bi+1 := Bi + βc, (17)

σ c
i+1 := σ c

i − lc, (18)

Li+1 := Li + sc. (19)

• Node H9: For some reason, the agent decided to do nothing. This behaviour will
affect only the blood alcohol level because of alcohol decomposition:

Bi+1 := Bi + βn. (20)

• Node H10: The sleep action is never executed on purpose. If the alcohol consump-
tion is about to wreak havoc on the brain, an internal biological self protection
mechanism forces the agent to sleep. He will wake up only when the blood alco-
hol level falls under a certain limit called the minimum blood alcohol level V (22).
Since liver and kidneys need time for alcohol decomposition, an agent never sleeps
for only one period.

Bi+1 := Bi + βn, (21)

Si+1 :=
{

0 if Bi+1 ≤ V ,
1 if Bi+1 > V .

(22)

3.3 Calibration

1000 cycles were used to simulate the duration of the social gathering. The genetic
optimisation occurred every tenth cycle, and 100 agents were competing about the
optimal behaviour strategy. Implications for our model are:

• The party lasted ten hours represented by 1000 cycles, leaving one cycle to 36 sec-
onds.

• The genetic optimisation was performed every five minutes.
• One hundred party guests had to share the available beverage resources.

Everyone who has ever organised a social happening of this size has been confronted
with this puzzler: How much beverages do we have to buy? Contrary to real-life
parties one resource should be scarce in our model, because a special interest arises
in how the genetic algorithm tries to compensate the lack of one specific drink, be it
coffee, schnaps, or beer. We assume that one healthy individual is capable of finishing
half a litre of beer in 25 minutes, one hundred millilitres of coffee or water in five
minutes, and 2 centilitres of schnaps in 5 minutes. Furthermore, the blood alcohol
level of individuals in our model world decreases by 0.2 per mill each hour. In our
model, the schnaps has been chosen to be the scarce resource.

After constantly modifying the parameters and evaluating the corresponding re-
sults, the initialisation of the parameters as displayed in Table 1 was used to accom-
plish the results described later. The intentional degrees were set up according to
Table 2. They represent the consumption and behaviour preferences of the agents.
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Table 1 Initialisation of the
parameters μ1 := 10.0 sc := −0.01 ab := 0.0005 σb

0 := 250

μ2 := 5.0 ls := 0.002 as := 0.0008 σc
0 := 50

μ3 := 10.0 lb := 0.01 βn := −0.001 σ s
0 := 20

B∗ := 2.0 lw := 0.01 βb := 0.01

� := 2.5 lc := 0.01 βs := 0.016

V := 1.5 m := 10 βc := −0.01

Table 2 Intentional degrees
dH1 dH3 dH5 dH7 dH9

0.3 0.7 0.4 0.3 2.0

3.4 Results

Though dealing with a problem which may not easily be solved by linear optimisation
algorithms, the genetic action tree approach makes the fitness values first converge to
and then fluctuate around a considerably high value by steadily adjusting each agent’s
behaviour strategy. As will be shown, this is even the case in a changing prevailing
context. Since the algorithms used for optimisation in this example are not determin-
istic, the shown results must be regarded as a sample and not as a final or optimal
solution to the problem. The investigation of the results of a multitude of simulations
suggests that the samples do not differ significantly.

3.4.1 Overall performance

In the simulations, 100 agents had to find a decision in 1000 periods or rounds. This
leaves the total number of actions taken to 100000. Figure 5 shows the distribution of
taken actions. Since schnaps has been chosen to be a scarce resource (see Sect. 3.3)
there have been only σ s

0 = 20 litres in stock. With one unit of schnaps being ls =
0.002 litres, the action of drinking one unit of schnaps totals to 10000. The action of
drinking one unit of beer was executed about twice as often, which may be due to the
fact that the intentional degree of the corresponding tree node dH5 was set to 0.4, that
the schnaps stock was limited, and that the hangover quality increases less through the
consumption of beer. The sleep action was performed the most. A detailed reasoning
for this behaviour can be found in Sect. 3.4.4. The other actions were executed less
often. This is a logical consequence of the high amount of periods spent sleeping and
the low intentional degrees for not drinking alcohol.

3.4.2 Fitness and mutation

In this paragraph we focus on fitness and the mutation count of only the root node
because its fitness function φ(c(i, dH0)) considers all of the objectives one agent has.
Figure 6 shows the development of the average, maximum, and minimum of the
fitness functions of all agents. One can observe a small dent in the average and max-
imum values of the fitness functions. This is due to the fact that most of the agents
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Fig. 5 The number of reached
leaf nodes as totals

have been asleep in this range (see also Sect. 3.4.3). Apart from that, the average
fitness values seem to stabilise on a considerably high level.

Nevertheless, mutation is not coming to a halt (see Fig. 7). Because a stable equi-
librium cannot be reached in our setting, the decision genes have to be adjusted con-
stantly. Consequently, the mutation count defined as the number of agents whose
decision gene have mutated in a given period will not converge to a minimum or even
to zero.

3.4.3 The development of the blood alcohol level

Figure 9 shows average and maximum blood alcohol levels of all agents in each
round. In the used simulation sample the schnaps stock was empty by round 732 (see
Fig. 8). Obviously, this had no effect on the average and maximum blood alcohol
level of the agents. The dent in the average curve can be explained by the fact that 99
of the 100 agents have been fallen asleep by round 625. After period 661, the number
of agents asleep was declining again.

Note that the minimum blood alcohol level equals 0 up to round 171. This is some-
what surprising because our model does not take into account designated drivers, in-
valids, former alcoholics, and people who do not consume alcohol for various other
reasons. On the other hand this indicates that the effects of mutation prevent genes
from “freezing” forever. One can see that the average blood alcohol level of all agents
fluctuates around the optimum alcohol level after an initial warm-up phase. This is a
satisfying result because it shows that the genetic algorithm is even capable of dealing
with a changed prevailing context once the schnaps stock is empty.

3.4.4 Hangover quality and sleep

Hangover quality is defined as the total amount of raw spirits consumed divided by
the total amount of liquids consumed by a specific agent. We take a closer look at the
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hangover quality part of the fitness functions (see equation 1) and find that

μ3

(
Ai−m

Li−m

− Ai

Li

)

gets higher the lower the increase of hangover quality has been during the last ten
(=m) periods. Keeping this in mind it makes perfect sense that the average hangover
quality of all agents only increases by small steps (see Fig. 10). In spite of that, the
genetic algorithm was able to quickly increase the blood alcohol level.

The great share of the “sleep” action can be easily explained. Firstly, the agents do
not know about the negative effects of falling asleep until they fall asleep. So almost
every agent falls asleep at least once. Secondly, alcohol decomposition takes time. In
one period of sleep, the blood alcohol level decreases by 0.002 per mill. An agent
falls asleep once the blood alcohol level exceeds 2.5 per mill and wakes up again as
soon as it is lower than 1.5 per mill. This means that a sleeping agent sleeps at least
for 500 periods. Figure 11 shows the number of sleeping agents per period.

4 Concluding remarks

In this paper, a general concept of the modelling of action spaces has been presented.
The epistemic question “How can actions be described through a general model suit-
able for computer simulations?” was answered by a concept used in analytic theories
of action, the action trees. To answer the evolutionary question “How can the emer-
gence and disappearance of actions be described through a uniform algorithm within
this model?”, we made use of genetic algorithms. The synthesis of these two meth-
ods, the genetic action trees, has been implemented in an extendable software pack-
age called GATKernel. To illustrate the use of this software, we applied it to a simple
model of social gatherings. We conclude that by looking at this feasibility study it
seems plausible that the genetic action trees approach is useful for simulations of that
kind.

To our knowledge, this is the first approach to publish a reusable multi-agent sys-
tem which makes use of the methodology of genetic action trees. The method is very
promising and can be expanded and applied in many different ways to a great variety
of problems in social, behavioural, economic, and life sciences. We hope to provide
the scientific community with a valuable tool to enrich the pool of state-of-the-art
multi-agent systems. The GATKernel library should nevertheless only be seen as a
starting point for more research in this direction. It could be enhanced by improving
the interface to make the library more accessible to researches and scientists not ca-
pable of programming in Java. Furthermore, even more genetic operators could be
implemented. For instance, blocking and unblocking operations could be introduced.
It would also be possible to introduce simulated annealing techniques to the kernel:
each step of a simulated annealing algorithm replaces a partition of the genes with
a random “nearby” gene, chosen with a probability that depends on the difference
between the corresponding fitness function values and on a global temperature para-
meter T , which is gradually decreased during the process.

To make the state-of-the-art multi-agent systems comparable, a benchmark study
with related software is yet to create. All this can be a starting point for future work.
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