138 research outputs found

    The additional value of first pass myocardial perfusion imaging during peak dose of dobutamine stress cardiac MRI for the detection of myocardial ischemia

    Get PDF
    Purpose of this study was to assess the additional value of first pass myocardial perfusion imaging during peak dose of dobutamine stress Cardiac-MR (CMR). Dobutamine Stress CMR was performed in 115 patients with an inconclusive diagnosis of myocardial ischemia on a 1.5 T system (Magnetom Avanto, Siemens Medical Systems). Three short-axis cine and grid series were acquired during rest and at increasing doses of dobutamine (maximum 40 Όg/kg/min). On peak dose dobutamine followed immediately by a first pass myocardial perfusion imaging sequence. Images were graded according to the sixteen-segment model, on a four point scale. Ninety-seven patients showed no New (Induced) Wall Motion Abnormalities (NWMA). Perfusion imaging showed absence of perfusion deficits in 67 of these patients (69%). Perfusion deficits attributable to known previous myocardial infarction were found in 30 patients (31%). Eighteen patients had NWMA, indicative for myocardial ischemia, of which 14 (78%) could be confirmed by a corresponding perfusion deficit. Four patients (22%) with NWMA did not have perfusion deficits. In these four patients NWMA were caused by a Left Bundle Branch Block (LBBB). They were free from cardiac events during the follow-up period (median 13.5 months; range 6–20). Addition of first-pass myocardial perfusion imaging during peak-dose dobutamine stress CMR can help to decide whether a NWMA is caused by myocardial ischemia or is due to an (inducible) LBBB, hereby preventing a false positive wall motion interpretation

    Association of Polyaminergic Loci With Anxiety, Mood Disorders, and Attempted Suicide

    Get PDF
    The polyamine system has been implicated in a number of psychiatric conditions, which display both alterations in polyamine levels and altered expression of genes related to polyamine metabolism. Studies have identified associations between genetic variants in spermidine/spermine N1-acetyltransferase (SAT1) and both anxiety and suicide, and several polymorphisms appear to play important roles in determining gene expression.We genotyped 63 polymorphisms, spread across four polyaminergic genes (SAT1, spermine synthase (SMS), spermine oxidase (SMOX), and ornithine aminotransferase like-1 (OATL1)), in 1255 French-Canadian individuals who have been followed longitudinally for 22 years. We assessed univariate associations with anxiety, mood disorders, and attempted suicide, as assessed during early adulthood. We also investigated the involvement of gene-environment interactions in terms of childhood abuse, and assessed internalizing and externalizing symptoms as endophenotypes mediating these interactions. Overall, each gene was associated with at least one main outcome: anxiety (SAT1, SMS), mood disorders (SAT1, SMOX), and suicide attempts (SAT1, OATL1). Several SAT1 polymorphisms displayed disease-specific risk alleles, and polymorphisms in this gene were involved in gene-gene interactions with SMS to confer risk for anxiety disorders, as well as gene-environment interactions between childhood physical abuse and mood disorders. Externalizing behaviors demonstrated significant mediation with regards to the association between OATL1 and attempted suicide, however there was no evidence that externalizing or internalizing behaviors were appropriate endophenotypes to explain the associations with mood or anxiety disorders. Finally, childhood sexual abuse did not demonstrate mediating influences on any of our outcomes.These results demonstrate that genetic variants in polyaminergic genes are associated with psychiatric conditions, each of which involves a set of separate and distinct risk alleles. As several of these polymorphisms are associated with gene expression, these findings may provide mechanisms to explain the alterations in polyamine metabolism which have been observed in psychiatric disorders

    Hypoxia-Induced Invadopodia Formation Involves Activation of NHE-1 by the p90 Ribosomal S6 Kinase (p90RSK)

    Get PDF
    The hypoxic and acidic microenvironments in tumors are strongly associated with malignant progression and metastasis, and have thus become a central issue in tumor physiology and cancer treatment. Despite this, the molecular links between acidic pH- and hypoxia-mediated cell invasion/metastasis remain mostly unresolved. One of the mechanisms that tumor cells use for tissue invasion is the generation of invadopodia, which are actin-rich invasive plasma membrane protrusions that degrade the extracellular matrix. Here, we show that hypoxia stimulates the formation of invadopodia as well as the invasive ability of cancer cells. Inhibition or shRNA-based depletion of the Na+/H+ exchanger NHE-1, along with intracellular pH monitoring by live-cell imaging, revealed that invadopodia formation is associated with alterations in cellular pH homeostasis, an event that involves activation of the Na+/H+ exchange rate by NHE-1. Further characterization indicates that hypoxia triggered the activation of the p90 ribosomal S6 kinase (p90 RSK), which resulted in invadopodia formation and site-specific phosphorylation and activation of NHE-1. This study reveals an unsuspected role of p90RSK in tumor cell invasion and establishes p90RS kinase as a link between hypoxia and the acidic microenvironment of tumors

    Locomotion modulates specific functional cell types in the mouse visual thalamus

    Get PDF
    The visual system is composed of diverse cell types that encode distinct aspects of the visual scene and may form separate processing channels. Here we present further evidence for that hypothesis whereby functional cell groups in the dorsal lateral geniculate nucleus (dLGN) are differentially modulated during behavior. Using simultaneous multi-electrode recordings in dLGN and primary visual cortex (V1) of behaving mice, we characterized the impact of locomotor activity on response amplitude, variability, correlation and spatiotemporal tuning. Locomotion strongly impacts the amplitudes of dLGN and V1 responses but the effects on variability and correlations are relatively minor. With regards to tunings, locomotion enhances dLGN responses to high temporal frequencies, preferentially affecting ON transient cells and neurons with nonlinear responses to high spatial frequencies. Channel specific modulations may serve to highlight particular visual inputs during active behaviors

    Exposure to HIV-1 Directly Impairs Mucosal Epithelial Barrier Integrity Allowing Microbial Translocation

    Get PDF
    While several clinical studies have shown that HIV-1 infection is associated with increased permeability of the intestinal tract, there is very little understanding of the mechanisms underlying HIV-induced impairment of mucosal barriers. Here we demonstrate that exposure to HIV-1 can directly breach the integrity of mucosal epithelial barrier, allowing translocation of virus and bacteria. Purified primary epithelial cells (EC) isolated from female genital tract and T84 intestinal cell line were grown to form polarized, confluent monolayers and exposed to HIV-1. HIV-1 X4 and R5 tropic laboratory strains and clinical isolates were seen to reduce transepithelial resistance (TER), a measure of monolayer integrity, by 30–60% following exposure for 24 hours, without affecting viability of cells. The decrease in TER correlated with disruption of tight junction proteins (claudin 1, 2, 4, occludin and ZO-1) and increased permeability. Treatment of ECs with HIV envelope protein gp120, but not HIV tat, also resulted in impairment of barrier function. Neutralization of gp120 significantly abrogated the effect of HIV. No changes to the barrier function were observed when ECs were exposed to Env defective mutant of HIV. Significant upregulation of inflammatory cytokines, including TNF-α, were seen in both intestinal and genital epithelial cells following exposure to HIV-1. Neutralization of TNF-α reversed the reduction in TERs. The disruption in barrier functions was associated with viral and bacterial translocation across the epithelial monolayers. Collectively, our data shows that mucosal epithelial cells respond directly to envelope glycoprotein of HIV-1 by upregulating inflammatory cytokines that lead to impairment of barrier functions. The increased permeability could be responsible for small but significant crossing of mucosal epithelium by virus and bacteria present in the lumen of mucosa. This mechanism could be particularly relevant to mucosal transmission of HIV-1 as well as immune activation seen in HIV-1 infected individuals

    Habitat use at fine spatial scale: how does patch clustering criteria explain the use of meadows by red deer ?

    Get PDF
    Large mammalian herbivores are keystone species in different ecosystems. To mediate the effects of large mammalian herbivores on ecosystems, it is crucial to understand their habitat selection pattern. At finer scales, herbivore patch selection depends strongly on plant community traits and therefore its understanding is constrained by patch definition criteria. Our aim was to assess which criteria for patch definition best explained use of meadows by wild, free-ranging, red deer (Cervus elaphus) in a study area in Northeast Portugal. We used two clustering criteria types based on floristic composition and gross forage classes, respectively. For the floristic criteria, phytosociological approach was used to classify plant communities, and its objectivity evaluated with a mathematical clustering of the floristic relevés. Cover of dominant plant species was tested as a proxy for the phytosociological method. For the gross forage classes, the graminoids/forbs ratio and the percentage cover of legumes were used. For assessing deer relative use of meadows we used faecal accumulation rates. Patches clustered according to floristic classification better explained selection of patches by deer. Plant community classifications based on phytosociology, or proxies of this, used for characterizing meadow patches resulted useful to understand herbivore selection pattern at fine scales and thus potentially suitable to assist wildlife management decisions

    Lipid profile, cardiovascular disease and mortality in a Mediterranean high-risk population: the ESCARVAL-RISK study

    Get PDF
    The potential impact of targeting different components of an adverse lipid profile in populations with multiple cardiovascular risk factors is not completely clear. This study aims to assess the association between different components of the standard lipid profile with all cause mortality and hospitalization due to cardiovascular events in a high-risk population. Methods This prospective registry included high risk adults over 30 years old free of cardiovascular disease (2008±2012). Diagnosis of hypertension, dyslipidemia or diabetes mellitus was inclusion criterion. Lipid biomarkers were evaluated. Primary endpoints were all-cause mortality and hospital admission due to coronary heart disease or stroke. We estimated adjusted rate ratios (aRR), absolute risk differences and population attributable risk associated with adverse lipid profiles. Results 51,462 subjects were included with a mean age of 62.6 years (47.6% men). During an average follow-up of 3.2 years, 919 deaths, 1666 hospitalizations for coronary heart disease and 1510 hospitalizations for stroke were recorded. The parameters that showed an increased rate for total mortality, coronary heart disease and stroke hospitalization were, respectively, low HDL-Cholesterol: aRR 1.25, 1.29 and 1.23; high Total/HDL-Cholesterol: aRR 1.22, 1.38 and 1.25; and high Triglycerides/HDL-Cholesterol: aRR 1.21, 1.30, 1.09. The parameters that showed highest population attributable risk (%) were, respectively, low HDL-Cholesterol: 7.70, 11.42, 8.40; high Total/HDL-Cholesterol: 6.55, 12.47, 8.73; and high Triglycerides/ HDL-Cholesterol: 8.94, 15.09, 6.92. Conclusions In a population with cardiovascular risk factors, HDL-cholesterol, Total/HDL-cholesterol and triglycerides/HDL-cholesterol ratios were associated with a higher population attributable risk for cardiovascular disease compared to other common biomarkers

    The genetic interaction network of CCW12, a Saccharomyces cerevisiae gene required for cell wall integrity during budding and formation of mating projections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mannoproteins construct the outer cover of the fungal cell wall. The covalently linked cell wall protein Ccw12p is an abundant mannoprotein. It is considered as crucial structural cell wall component since in baker's yeast the lack of <it>CCW12 </it>results in severe cell wall damage and reduced mating efficiency.</p> <p>Results</p> <p>In order to explore the function of <it>CCW12</it>, we performed a Synthetic Genetic Analysis (SGA) and identified genes that are essential in the absence of <it>CCW12</it>. The resulting interaction network identified 21 genes involved in cell wall integrity, chitin synthesis, cell polarity, vesicular transport and endocytosis. Among those are <it>PFD1</it>, <it>WHI3</it>, <it>SRN2</it>, <it>PAC10</it>, <it>FEN1 </it>and <it>YDR417C</it>, which have not been related to cell wall integrity before. We correlated our results with genetic interaction networks of genes involved in glucan and chitin synthesis. A core of genes essential to maintain cell integrity in response to cell wall stress was identified. In addition, we performed a large-scale transcriptional analysis and compared the transcriptional changes observed in mutant <it>ccw12</it>Δ with transcriptomes from studies investigating responses to constitutive or acute cell wall damage. We identified a set of genes that are highly induced in the majority of the mutants/conditions and are directly related to the cell wall integrity pathway and cell wall compensatory responses. Among those are <it>BCK1</it>, <it>CHS3</it>, <it>EDE1</it>, <it>PFD1</it>, <it>SLT2 </it>and <it>SLA1 </it>that were also identified in the SGA. In contrast, a specific feature of mutant <it>ccw12</it>Δ is the transcriptional repression of genes involved in mating. Physiological experiments substantiate this finding. Further, we demonstrate that Ccw12p is present at the cell periphery and highly concentrated at the presumptive budding site, around the bud, at the septum and at the tip of the mating projection.</p> <p>Conclusions</p> <p>The combination of high throughput screenings, phenotypic analyses and localization studies provides new insight into the function of Ccw12p. A compensatory response, culminating in cell wall remodelling and transport/recycling pathways is required to buffer the loss of <it>CCW12</it>. Moreover, the enrichment of Ccw12p in bud, septum and mating projection is consistent with a role of Ccw12p in preserving cell wall integrity at sites of active growth.</p> <p>The microarray data produced in this analysis have been submitted to NCBI GEO database and GSE22649 record was assigned.</p
    • 

    corecore