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Locomotion modulates specific functional cell types
in the mouse visual thalamus
Çağatay Aydın 1,2, João Couto1,2, Michele Giugliano 1,3,5,6,7, Karl Farrow1,2,3 & Vincent Bonin 1,2,3,4

The visual system is composed of diverse cell types that encode distinct aspects of the visual

scene and may form separate processing channels. Here we present further evidence for that

hypothesis whereby functional cell groups in the dorsal lateral geniculate nucleus (dLGN) are

differentially modulated during behavior. Using simultaneous multi-electrode recordings in

dLGN and primary visual cortex (V1) of behaving mice, we characterized the impact of

locomotor activity on response amplitude, variability, correlation and spatiotemporal tuning.

Locomotion strongly impacts the amplitudes of dLGN and V1 responses but the effects on

variability and correlations are relatively minor. With regards to tunings, locomotion

enhances dLGN responses to high temporal frequencies, preferentially affecting ON transient

cells and neurons with nonlinear responses to high spatial frequencies. Channel specific

modulations may serve to highlight particular visual inputs during active behaviors.
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Brain state and behavioral context profoundly influence how
animals perceive and respond to stimuli. Perhaps one of the
most striking examples is that of “inattentional blindness”

whereby observers fail to notice salient scene changes when
attending to specific aspects. Indeed, at the neuronal level, activity
in sensory areas co-varies with behavioral factors such as atten-
tion1–5, arousal6, reward7, and movement8. These modulations
may control the flow of sensory information in the brain6,
improve sensory representations9–11, or reflect integration of
signal from multiple modalities12,13. A critical question is how
behavioral modulations impact the sensory processing performed
by the neurons

Responses in the mouse visual cortex are strongly modulated by
locomotor activity8,14. The effects on cellular responses are
diverse15–17 and correlated with genetic cell types8,11,15,16,18.
However, the degree to which locomotion alters the response
properties of sensory neurons is less understood. This is particularly
important for vision, because locomotion is associated with visual
motion flow, which changes markedly the statistics of visual inputs.

One possibility is that visual neurons adapt to these changes by
modulating the neurons’ visual tuning properties, thus high-
lighting specific features that occur during locomotion. In
accordance, visual neurons can alter their peak temporal fre-
quencies14,19, size tuning20,21, and show tuning for movement
speed21,22. Another possibility is that locomotion changes the
responsiveness of specific cell populations. Indeed, locomotion
may specifically enhance V1 gains at high spatial frequencies11

through local inhibition18. Nonetheless, if locomotion acts dif-
ferentially on specific cell populations it would further support
the hypothesis that functional cell types form parallel information
channels in the visual system.

While the majority of visual inputs reach primary visual cortex
(V1) through the dorsal lateral geniculate nucleus (dLGN),
behavioral modulations are thought to be relayed through top-
down circuits23, local connectivity24, and/or neuromodulatory
mechanisms25. However, thalamic nuclei (in particular the dLGN
and the pulvinar) have also been shown to carry locomotion and

contextual signals13,21,26,27, suggesting that some of the mod-
ulations observed in the visual cortex might originate in the
thalamus. Nonetheless, if thalamic modulations are non-specific,
its impact on sensory coding could be negligible.

We investigated in head-fixed mice the impact of locomotion
on the integration of spatiotemporal contrast by dLGN and V1
neurons. Measuring responses to stimuli of different spatial and
temporal frequencies, we found that locomotion broadly increases
dLGN and V1 responses to visual stimuli but has only a limited
impact on response variability and correlations. We also found
that locomotion increases of dLGN responses to rapidly varying
stimuli and that it modulates the activity of cell populations with
distinct receptive field and spatial tunings. These results indicate
that behavior can influence visual processing through activity
modulations of specific functional cell types These modula-
tions may serve to highlight specific visual inputs to cortex during
active behaviors.

Results
Locomotion modulates amplitudes of dLGN and V1 responses.
To investigate the impact of behavioral state on neuronal responses
in the early visual system, we performed multichannel recordings in
head-fixed running mice (Fig. 1). C57Bl/6 J mice (n= 16 mice)
were implanted with a head fixation bar and trained to voluntary
run on a treadmill (Fig. 1a). Visual responses of dLGN and V1
neurons with well-isolated spike waveforms were recorded with
multichannel silicon probes (Fig. 1b; Supplementary Fig. 1a–b).
Simultaneous recordings from dLGN and V1 neurons were
obtained in about half of the experiments (16/28 sessions in 9/16
mice). The behavior consisted of alternations between high-speed
movement (mean speed 13.6 ± 11.9 cm/s; median duration 6.4 s;
n= 23 sessions) and pauses (speed < 0.25 cm/s, median duration
8.8 s) (Supplementary Fig. 1f, g, h). To assess behavioral and arousal
states, we measured treadmill movement, eye movement, and pupil
size using infrared eye tracking (Fig. 1c). Locomotion coincided
with large pupil size fluctuations, rapid dilations upon movement
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Fig. 1 Experimental setup and behavioral paradigm. a Illustration of the linear treadmill assay. Full field, upward drifting sinusoidal gratings of different
temporal (TF, 1,2,4,8,16 Hz) or spatial (SF, 0.01, 0.02, 0.04, 0.08, 0.16 cpd) frequencies were delivered to the right eye while animals ran on the treadmill. b
Simultaneous multi-electrode recordings from dorsal lateral geniculate nucleus (dLGN, coordinates LM 2.1 AP 2.5) and primary visual cortex (V1,
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d Visual stimulation epochs (shaded areas) were categorized into locomotion (red) or stationary (black) trials based on locomotion speed measurements
(black trace from c dashed lines). Scale bar, 20 cm/s. e Distribution of the duration of locomotion and stationary bouts (TF experiments: N= 12 mice in
23 sessions). f Fraction of locomotion (red) and stationary trials (black) for each temporal frequency (average±s.e.m. across sessions). g Pupil size as
function of time for locomotion (red) and stationary (black) trials (TF experiments: 11/23 sessions with pupil size data; average ± s.e.m., N = 335 and 2414
epochs)
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onset and slow constrictions upon pause onsets (Fig. 1c, g), con-
sistent with locomotor related fluctuations in arousal17,21.

To investigate the impact of locomotion on visual processing,
we examined responses to upward drifting gratings stimuli of
different spatial and temporal frequencies (Fig. 1d). Stimuli were
presented to the contralateral eye in 2-s intervals, independent of
movement, and interleaved with epochs of equiluminant gray
screen (see Methods; Visual Stimulation and eye tracking). We
selected neurons with robust responses to the stimuli (mean
peak-to-peak F1 amplitudes > 2.0 spikes/s, TF dLGN, 232/403
cells; V1, 110/255 cells; SF dLGN 107/167 cells; V1, 44/55 cells,
see Methods). Responses were characterized by an overall increase
in firing rate (F0; dLGN, 3.8 ± 8.8 spikes/s, N= 119 cells; V1, 5.3
± 7.4 spikes/s; mean ± s.d.; N= 47 cells) and a periodic response
at the temporal frequency of the stimulus (F1; dLGN, 8.4 ± 12.8;
V1; F1, 4.2 ± 3.8 spikes/s; mean ± s.d.). We compared responses
within locomotion bouts (>1 cm/s for >1.6 s of 2-s trial duration)
to responses within stationary epochs (<0.25 cm/s for >1.6 s of 2-s
trial duration) (Fig. 1e). We obtained 30–50 repeated trials for
each stimulus and blank epoch, 17% and 70% of which fell within
locomotion and stationary epochs, respectively (n= 23 record-
ings sessions in 16 mice, TF experiment, see Methods; Selection
criterion for locomotion and stationary epochs) (Fig. 1f). Pupil
size differed markedly across behavioral conditions (Fig. 1g).
Unless stated otherwise, all results described below stem from
these two data sets.

Locomotion strongly influenced the amplitudes of dLGN and
V1 responses (Fig. 2). Changes in dLGN and V1 responses linked
to locomotion showed as an overall scaling of firing rate

responses to the stimuli (Fig. 2; Supplementary Fig. 2, red vs.
black). The effects of locomotion on dLGN and V1 responses
were diverse, even amongst simultaneously recorded
neurons. Some neurons showed an increase in response
amplitude (Fig. 2a, c top; Supplementary Fig. 2a, c top). Other
neurons showed no effect or a weak response reduction (Fig. 2a
bottom; Supplementary Fig. 2a bottom). To quantify the
modulations, we computed the average fractional change in
amplitude of responses between locomotion and stationary
epochs (Fig. 2b, d; Supplementary Fig. 2b, d, red lines),
quantifying the effects on F0 and F1 responses (see Methods:
Modulation index).

The strengths of modulations in dLGN and V1 were similar
(Fig. 3). The distributions of modulation indices in dLGN and V1
were similar (Fig. 3a–d; Supplementary Fig. 3a–d). In both areas,
response F0 and F1 modulations were highly correlated (r= 0.74
and 0.77, n= 232 and 110 cells, dLGN and V1, Supplementary
Fig. 3i–j). No consistent change in F1 over F0 ratio was observed.
These change in visually-evoked activity were paralleled by
changes in spontaneous firing rates (Supplementary Fig. 4g–l).

Locomotion increased both neural firing responses (F0, dLGN,
20.0 ± 37.2%, and V1, 36.1 ± 45.9%) and the amplitudes of the
oscillatory responses to the stimuli (F1, dLGN, 13.1 ± 34.7% and
V1 26.7 ± 39.9%, mean ± s.d., n= 232 dLGN and 110 V1 cells).
Amongst cells showing a response increase (MI > 0), the
amplitudes of F1 responses in dLGN and V1 were 29.6 ± 27.7%
and 37.5 ± 36.3% larger during locomotion, respectively (mean ±
s.d., dLGN and V1, n= 176 and 56 cells) (Fig. 3g). Amongst cells
showing a reduction in response (MI < 0), amplitudes of F1
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responses decreased by 20.6 ± 20.2% and 16.5 ± 18.9% (Fig. 3h).
While modulations of response F0 tended to be stronger in V1
than in dLGN (p= 0.01, MI > 0 and p= 0.16 MI < 0, K–S test,
Fig. 3e, f), no pronounced difference between areas was observed
for response F1 (p= 0.06, MI > 0 and p= 0.33, MI < 0, K–S test,
Fig. 3g, h). Likewise, spontaneous firing rates in dLGN and V1
were significantly different between conditions (dLGN, p= 0.01
t-test; stationary: 13.6 ± 1.1; locomotion: 18.4 ± 1.5 spikes
per second) (V1, p < 0.001; stationary: 17.5 ± 1.3; locomotion:
23.3 ± 1.5 spikes per second) (Supplementary Fig. 4g–l). Thus,
locomotion modulates dLGN activity with modulation strengths
similar to those observed in V1.

Limited impact on response variability and correlations. While
dLGN and V1 visual response amplitudes increase during loco-
motion, concomitant changes in response variability could
enhance or limit the gains. To investigate the effects of locomo-
tion on trial-to-trial variability of responses, we selected record-
ings with at least ten repeated trials in either state and for each
stimulus condition. To estimate firing rate variability of responses
to the stimuli at short-time scales, we computed the Fano factor
of responses in 50-ms bins and averaged the results over the
stimulation epoch. To estimate response variability at longer time
scales, we calculated the variance of F1 responses across trials and
their coefficient of variation over the stimulation epoch.

Locomotion increased the strength of responses without
increasing response variability of dLGN neurons (Fig. 4). While
at short time scales, V1 firing rates showed a mild reduction in
Fano factor (Fig. 4f, Supplementary Fig. 4f). No such reduction
was seen in dLGN (Fig. 4e, Supplementary Fig. 4e). Thus, as firing
rates increase during locomotion, there were no significant
changes in variability at short time scales (Fano factor; dLGN, p
= 0.27, V1, p= 0.24; K–S test; Supplementary Fig. 4e–f).

At longer time scales, the variance of F1 response amplitudes
varied slightly in dLGN and significantly in V1 (F1 variance,
dLGN, p < 0.98, V1, p < 0.004, K–S test) (Fig. 4c, d, Supplemen-
tary Fig. 4a–b). The nearly constant variance occurred in contrast
with the pronounced increase in F1 response amplitudes (Fig. 4a,
b). The increases in mean together with constant variance result

in a net reduction of the coefficients of variation of F1 responses
(Supplementary Fig. 4c–d). Thus, as responses increase during
locomotion, they do not become more variable.

To examine the degree to which variability is shared between
neurons and how shared variability depends on behavioral state,
we examined the correlation of spike counts from responses to
the stimuli (Fig. 5a). We computed spike-count correlations
between simultaneously recorded cell pairs in 1-s time windows
starting 500 ms after stimulus onset and compared the results
across behavioral states. While extracellular recordings can, in
principle, resolve fast time-scale correlations such as those due to
monosynaptic connections (Fig. 5b), short-time-scale correlations
between cell pairs were rarely observed, with spike-count
correlations extending over several hundred milliseconds (Fig. 5c,
d). In dLGN, the distributions of spike count correlations during
locomotion and stationary epochs were indistinguishable (Fig. 5e,
g; p= 0.12; K–S test). In V1, there was a weak tendency for
weaker correlations during locomotion (Fig. 5f; 0.08 in locomo-
tion and 0.12 in stationary epochs; p-value 0.06; K–S test),
consistent with previous reports10,17,21. Similar results were
obtained using the full duration of the trials (Fig. 5g, h).

Thus, despite the strong enhancement of responses, dLGN and
V1 neurons show no pronounced change in response variability
and correlation across behavioral states.

Impact on selectivity for spatial and temporal frequencies. We
next examined the impact of locomotion on response selectivity
for spatial and temporal frequency (Fig. 6; Supplementary Fig. 5–
6). In addition to modulating response gain, behavioral state may
also affect neurons’ receptive fields and how they respond to
different stimuli. To address this question, we examined tunings
of responses for spatial and temporal frequencies.

Consistent with previous work28,29, dLGN and V1 neurons
showed diverse tuning curves spanning a broad range of spatial
and temporal frequencies (Fig. 6a, d, g, j). Locomotion broadly
affected these responses (Fig. 6a, d, g, j, symbols, red vs. black). To
quantify the impact on tuning, we fitted descriptive functions to
the responses (Fig. 6a, d, g, j, curves) and extracted preferred
spatial and temporal frequencies and tuning bandwidths
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(goodness of fit > 90%, n= 143 and 98 cells, dLGN and V1 in TF
experiments, n= 128 and 47 cells in SF experiments).

The distributions of tuning parameters measured in locomo-
tion and stationary epochs were very similar (p= 0.31 and 0.86 in
TF experiments, p= 0.25 and 0.81 in SF experiments; dLGN and
V1, K–S test). The similarity held for preferred temporal
frequencies (Fig. 6b, c, e, f; Supplementary Fig. 5a–d; Supple-
mentary Fig. 6i–j), preferred spatial frequencies (Fig. 6h, i, k, l;
Supplementary Fig. 5e-h; Supplementary Fig. 6k–l), and tuning
bandwidths (p= 0.77 and p= 0.16 in TF experiments; p= 0.81
and p= 0.94 in SF experiments; dLGN and V1; K–S test)
(Supplementary Fig 5b–d, f–g).

To examine whether locomotion differentially affects
responses to stimuli of different spatial and temporal
frequencies, we computed the average ratio of responses in
locomotion vs. stationary trials (Supplementary Fig. 6a–h).
Locomotion affected responses to different spatial frequencies
indiscriminately (Supplementary Fig. 6e–h, p= 0.41 for dLGN
and p= 0.67 for V1, paired t-test of responses to 0.16 cpd in
comparison to 0.02 cpd). However, dLGN responses to
high temporal frequencies were enhanced during locomotion
(Supplementary Fig. 6a–b, left panels, p < 0.05 at 8 Hz and p <
0.001 at 16 Hz, paired t-test in comparison to responses at 2
Hz), an effect that was restricted to neurons with positive
modulation indices (Supplementary Fig. 6a–b, middle and right
panels). This enhancement is similar to what was observed in
visual cortex with calcium imaging14. Our sample of V1
neurons, however, did not show increased responses at high
temporal frequencies but rather a tendency for weaker
responses at 1 Hz (Supplementary Fig. 6c–d).

Thus, while locomotion has weak, unsystematic effects on
the neurons' spatial tuning curves, it differentially affects
population amplituds of responses to different temporal
frequencies.

Modulations of dLGN functional cell types. Rather than
by changing the neurons' tuning properties, locomotion may
impact visual coding by differentially modulating populations
with distinct receptive field properties. To explore this possibility,
we used k-means clustering to group dLGN neurons according to
the shape of their temporal responses to the spatial frequency
stimuli, using exclusively data recorded in stationary epochs. We
then computed for each group the distribution of modulations
indices from responses to spatial frequency stimuli in locomotion
and stationary epochs. Cells showing suppression of activity by
the stimuli instead of activation were excluded from this analysis
(n= 29 cells).

The clustering yielded three broad groups of cells that differed
in tuning for spatial frequency, response linearity and baseline
activity (Fig. 7a, b, Supplementary Fig. 7c–f). One group with
elevated firing responses at high spatial frequencies (Fig. 7a, b,
Supplementary Fig. 7c–f, Group 1, n= 35 cells) showed
particularly pronounced modulations (Fig. 7c, purple curve). By
comparison, cells with responses tuned to mid-range spatial
frequencies (Fig. 7a, Group 2, n= 86 cells) and cells with
relatively high baseline firing rates (Fig. 7a, Groups 3, n= 42
cells) showed weaker modulations (Fig. 7d, e p < 0.01, signifi-
cantly different from group 2 and 3, K–S test). Notably, the
elevation of firing at high spatial frequencies observed in Group 1
was not accompanied by periodic responses at the temporal
frequency of the stimulus, indicative of nonlinear spatial
summation as seen in Y cells in the cat retina and thalamus30–
32. Other groups showed in comparison little indication of
nonlinear responses to the stimuli.

The marked behavioral modulations observed of neurons in
Group 1 are likely not a consequence of their elevated firing rate
at high spatial frequencies. Pronounced modulations were
observed in F1 responses over a broad range of spatial frequencies
(Fig. 7c, top, Supplementary Fig. 7c, e). The differences in
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modulations were also not explained by the neurons’ baseline
firing rates (Supplementary Fig. 7d, f, top and centre). Finally, the
distributions of inter-spike intervals at high firing rates (<10 ms)
were comparable between groups suggesting that the response
dynamic range was not saturated in any group (Supplementary
Fig. 7b). The duration of locomotion and stationary bouts in the
experiments did not explain differences between groups (Supple-
mentary Fig. 7a).

To examine whether locomotion differentially modulates the
responses of ON and OFF cells, we measured responses to
uniform black and white stimuli alternating at 1 Hz and used
responses in stationary epochs to categorize neurons into
transient ON, sustained ON, transient OFF and sustained OFF
(Fig. 8a, b, n= 43 cells, 33 cells, 24 cells, and 22 cells) (see
Methods). We then compared modulation indices from responses
to the spatial frequency stimuli in locomotion and stationary
epochs (Fig. 8c, d). Neurons responding to both the ON and OFF
phases were excluded (n= 21 cells). Transient ON cells showed
more pronounced modulations by locomotion relative to other
cell groups (p < 0.01, compared to other groups, K–S test, Fig. 8c,
d, Supplementary Fig. 8). Thus, rather than indiscriminately
impacting visual responses, locomotion preferentially modulates
responses of dLGN neurons with specific visual response
properties.

Modulations of dLGN responses following atropine applica-
tion. To determine whether modulations of dLGN responses
during locomotion reflect changes in light inputs due to changes
in pupil size, we compared modulations of dLGN responses to
spatial and temporal frequency stimuli before and after applica-
tion of atropine to the contralateral eye (control vs. atropine, n=
4 mice) (Fig. 9). Clear modulations of responses by locomotion
were observed after dilation of the pupil by atropine (Fig. 9a–c).
Response modulations of dLGN neurons to temporal frequency
stimuli were similar before and after atropine application (n= 17
cells and 42 cells; atropine vs control—same animals without

atropine application, p= 0.24; atropine vs baseline—neurons
from Fig. 3b; 232 cells; p= 0.55, K–S test) (Fig. 9d, left inlet).
Measurements from responses to spatial frequency stimuli,
however, showed slightly weaker modulations (n= 51 cells and
41 cells; atropine vs control; p= 0.61; atropine vs baseline—
neurons from Supplementary Fig. 3b; 164 cells; p= 0.09; K–S
test) (Fig. 9d, right inlet).

To address whether differential modulations of ON and OFF
cells reflect changes in light input, we compared the average
responses of ON and OFF cells in locomotion and stationary trials
before and after application of atropine (control; 4 mice, ON; n=
27 cells, ON-OFF; n= 26 cells, OFF, n= 13 cells, atropine; ON; n
= 25 cells, ON-OFF; n= 42 cells; OFF, n= 21 cells). Similar
locomotion-related modulations of ON and OFF cells were
observed before and after atropine application (Fig. 9e). Therefore,
while changes in light input due to pupil size fluctuations may
contribute to locomotion-related modulations of dLGN responses,
pupil size fluctuations do not appear to explain the differential
impact on the responses of ON and OFF cells.

Discussion
Using acute silicon probe recordings in head-fixed locomoting
mice, we characterized the impact of locomotor activity on
integration of spatiotemporal contrast by dLGN and V1 neurons.
In both brain areas, neurons showed strong locomotor rela-
ted modulations of response amplitudes and comparatively weak
modulations of response variability and correlations. While
locomotion has unspecific effects on dLGN and V1 neurons’
spatial and temporal tuning curves, it enhances dLGN responses
to high temporal frequencies. dLGN neurons with distinct spatial
tunings also show differential modulations. These findings illus-
trate that behavioral modulations can affect sensory coding by
modulating responses of specific functional cell types.

First described in the visual cortex8, recent studies reported
various locomotion-related modulations in dLGN13,21,33,34.
While weak effects were also observed34, effects on contrast21 and
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sensorimotor integration13 were reported. Our work differs from
past studies in three ways. We assessed the impact on the neu-
rons’ spatiotemporal receptive fields. We examined modulations
of populations with specific response properties. Finally, we used

simultaneous recordings to directly compare activity modulations
in dLGN and V1. Taken together, these measurements provide a
detailed account of how locomotion influences the neurons' visual
coding.
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A calcium imaging study in V1 reported increased sensitivity to
high spatial frequencies during locomotion11. The time course of
the genetically encoded calcium indicator, however, precludes
measurements of time varying responses to the visual stimulus,
which are critical for the characterization of the neurons’
visual properties. Using extracellular recordings, we could mea-
sure the linear and nonlinear components of the responses. Local
inhibition through a specific class of interneurons has been
proposed as a mechanism to modulate spatial frequency tuning in
visual cortex during locomotion18. Nonetheless, our data suggests
that increased firing rates in response to high spatial frequencies
during locomotion in V1 might originate in the thalamus.

The properties of the subgroup we found to be most modulated
resemble the responses of Y-type retinal ganglion cells
observed in cats30–32, and mice35. Like the neurons we identi-
fied, Y-type neurons may show transient response to visual sti-
muli36. Previous work noted the absence of transient ON cells in
the mouse dLGN29,37. We observed cells with transient-ON,
transient-OFF, sustained-ON and sustained-OFF response types
(see also ref. 38). This may reflect differences in sampling from the
high density silicon probes we used. In our sample, most
transient-ON cells had elevated firing rates at high spatial fre-
quencies and showed higher modulations by locomotion than the
other groups. This suggests modulations affect specifi cell
populations.

Locomotion was reported to reduce response variability and
increase signal-to-noise ratio of responses in dLGN and V115–
17,21. We also observed increasedresponse fidelity in dLGN and
V1 during locomotion but in comparison to the pro-
nounced impact on response amplitudes, the effects on response
variability and correlation were minor. It has been proposed that
the mechanism for the increase in signal-to-noise ratio is peri-
somatic and dendritic inhibition16. Nonetheless, we found only a
slight decrease in trial-to-trial variability during locomotion.
While the impact of variability of thalamic inputs on V1
responses is not clear, it is possible that it affects how V1 neurons
encode visual stimuli.

A previous study characterized pairwise correlations in spon-
taneous activity and found that these are reduced during loco-
motion in V1 but not in dLGN21. We found a similar behavior in
correlations of responses to visual stimulation, whereby V1
neurons but not dLGN neurons showed a mild reduction during
locomotion. We have computed noise correlations during the
temporal frequency stimulus without taking the stimulus pre-
ference of the neurons into account. Further studies should
investigate relation between visual response correlations and
neuronal tuning during locomotor behavior39.

Erisken et al.21 reported that locomotion can impact size
tuning of dLGN neurons, believed to reflect integration of spatial
contrast. The preferences for spatial frequency and orientation of
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V1 neurons, however, seem largely preserved 11. Accordingly, we
found that locomotion neither affects the temporal nor spatial
frequency tunings of the neurons.

In rabbits and rodents, arousal is associated with enhanced
responsiveness19 and locomotor activity8. While the effects of
arousal and motor activity are intertwined, some effects seem to
be specific to locomotion17. In our study we could not dissociate
the contributions of arousal from those of locomotion, however,
we provide evidence that the mechanism is independent of
changes in light level that occur due to pupil fluctuations.

Methods
Animals, surgery, and histology. All experimental procedures were approved by
the ethical research committee of KU Leuven. Experiments were conducted in 16
male C57Bl/6j mice bred in the KU Leuven animal facility (22–30 g, 2–7 months
old). Nine of these were used for simultaneous recordings from dLGN and V1.
Dexamethasone (6 mg/kg I.M.) was injected four hours before the procedure. Mice
were anesthetized with isoflurane (induced: 3%, 0.8 L/min O2; sustained: 1–1.5%,
0.5 L/min O2). The scalp was disinfected with %70 ethanol and Betadine and the
skull exposed. The lateral and posterior muscles were retracted and Vetbond (WPI)
was applied to exposed tissue and skin. Animals were then implanted with a
custom-made titanium headpost, centered on the posterior left hemisphere40. A 2
mm diameter ground screw was then implanted through the skull in contact with
the dura, over the cerebellum in the left hemisphere. Post-operative care was
administered for 72 h following the surgery (Cefazoline [15 mg/kg I.M.] and
Buprenorphine [0.6 mg/kg I.M]). Mice were let to recover for one week and were
habituated to the treadmill for 2–4 weeks. At least two days prior to the recordings,
one/two ~1 mm craniotomies were made above the dorsal lateral geniculate nuclei
(2.5 mm posterior to bregma, 2.1 mm lateral) or/and the V1 (3.8 mm posterior to
bregma, 2.5 mm lateral). The dura was left intact. The craniotomy was covered with
ACSF and a 5 mm circular coverslip. In 7/16 mice, artificial dura (Dura-Gel,
Cambridge NeuroTech) was applied before covering the craniotomy. Finally, sili-
con sealant (Kwik-Cast, WPI) was used to cover the top of coverslip. Cefazoline
(15 mg/kg I.M.) was administered to prevent infection in the 3 days following the
procedure. Recordings were performed for up to 4 days following a 2-day recovery
period from the craniotomy surgery. Between recording sessions, the craniotomies
were covered in the same manner as described above. Probe tracks were

reconstructed from the last recording session by dipping the probes in Dil solution
before insertion (Supplementary Fig. 1c). At the end of the last recording session,
mice were anesthetized with ketamine (150 mg/kg I.M.) and perfused with phos-
phate buffered saline (PBS) followed by paraformaldehyde (4% PFA). The fol-
lowing day, brains were sectioned at 50 µm thickness using a cryostat (Leica,
Germany). Slices were then stained with DAPI and imaged on a confocal micro-
scope (Zeiss, LSM800).

Head-fixed locomotion assay. Headposted mice were placed on a linear treadmill
apparatus41. The treadmill belt (150 cm long) was made of velvet paper or velcro
tape (5 cm wide). Custom 3D printed wheels were located at both ends of the
treadmill apparatus and a platform in the center. An optical encoder (200 or 500
pulse/revolution, Avago Technologies) was attached to one of the wheels and used
to monitor animal velocity. A water reward was given at a fixed location (every 150
cm). A microcontroller (AT89LP52, Atmel) was used for driving the water reward
valve (pinch valve—MS scientific). Encoder and reward pulses were logged with a
data acquisition board (MCC) and stored for offline analysis.

Mice were water restricted 5 days after head-posting and habituated to head
restraint for 2 days (10–30 min sessions). After habituation, mice were head-fixed
on the linear treadmill apparatus for 30–60 min. Sessions were terminated in case
of animal discomfort. Water rewards (~10 µl) were given every 150 cm. Animals
were prepared for electrophysiology experiments when their performance
surpassed 100 laps/h. Mice were trained with a gray screen (50% luminance),
centered 20 cm away from the right eye. The average weight before water
restriction was 26 ± 3 g. Mice were given 3 min of water access per day. If their
weight dropped 15% of the weight before water restriction they were given free
access to water.

Visual stimulation and eye tracking. Sinusoidal upwards drifting gratings (full-
screen, 2 s duration) with varying temporal frequencies (1, 2, 4, 8, 16 Hz) and
spatial frequencies (0.01, 0.02, 0.04, 0.08, 0.16 cpd) were displayed on a calibrated
22” LCD monitor (Samsung RZ2233). The screen was positioned in front of the
contralateral eye covering 0° central to 120° peripheral and −15° lower to 25° upper
visual field (Supplementary Fig. 1G). Data for temporal frequency was gathered
from 14 animals and for spatial frequency from 13 animals. In 9/23 temporal
frequency sessions and 9/15 spatial frequency sessions, stimuli were interleaved
with 1 s epochs of equiluminant gray screen. In the remaining sessions, the
gray screen was only presented at the end of the trial sequence. The movement and
size of the contralateral pupil were monitored at 30 frames per second
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(Supplementary Fig. 1F) with a CCD camera (AVT Prosilica GC660 with Navitar
Zoom 6000) equipped with an infrared filter. Infrared light (700 nm) was directed
at the eye to uniformly illuminate the pupil.

Simultaneous dLGN and V1 recordings. On the recording session, the Kwik-cast
silicon elastomer was cleaned with 70% ethanol and removed. Craniotomies were
rinsed and filled with ACSF. For simultaneous recordings, silicone probes (Neu-
roNexus/Atlas Neuroengineering) were lowered using independent micro-
manipulators (Scientifica). Probes were lowered under a stereoscope (Leica) to the
target region at a speed of 10 µm steps per second and micro-positioned at ~1 µm
per second. Single shank 16 channels poly-electrode probes (2 shaft, 16 channels,
50 µm site distance, and 375 µm recording area) were used for dLGN recordings
and single shank linear 16 channels probes or 32 channels poly-electrode probes
inserted perpendicularly to the surface of the exposed cortex for V1 recordings. The
up-most electrode was used as reference and was located 100–200 µm below the pia
in V1 (Supplementary Fig. 1d, e) and in white matter for dLGN recordings. No
artifacts from spiking units detected by the reference electrode were observed.
When the probes were in place, the craniotomies were covered with 1% agarose.
Recording sessions were initiated 20–30 min after probe placement and lasted
1–1.5 h. We used a Grapevine (Ripple) or DigiLynx (Neurolynx) recording system
to acquire electrophysiological signals at a sampling rate of 30 or 32 kHz respec-
tively. The probes were cleaned with 1% enzymatic solution (Tergazyme) for 30
min at the end of each recording session. Recording sessions from individual brain
regions, were performed using Neuropixels (Phase 2) probes with 120 recording

sites42. Recordings were done using the ground screw as reference. For acquisition,
we used the Whisper system (HHMI-Tim Harris) at a sampling rate of 25 kHz.

Preprocessing and spike sorting. Electrophysiological data was high-pass filtered
(0.8–5 kHz) for spike detection and down-sampled to 5000 Hz for local field
potential analysis by custom batch scripts based on Ndmanager plugins43 {Jun,
2017 #87} (http://ndmanager.sourceforge.net). For A16 and A32 probes, channels
were divided into four groups and spike sorting was performed on each separately.
Spike waveforms were extracted and principle component analysis used to identify
spike features and clustered using KlustaKwik (http://klustakwik.sourceforge.net).
Manual refinement was done in Klusters (http://klusters.sourceforge.net). Only
stable units that exibited a clear refractory period and had an isolation distance
bigger than 20 were selected for further analysis. For Neuropixel recordings we
used Spyking Circus for spike sorting44 and Phy45 {Yger, 2018 #96} for cluster
refinement.

Data analysis. All data analysis was performed using custom-written code writ-
ten in MATLAB (The Mathworks, Natick, MA).

Selection of locomotion and stationary trials. A trial was considered during
locomotion when the animal was running at least 1 cm/s during 80% of its duration
(2 s). Stationary trials were defined as those were the animal velocity was below
0.25 cm/s in at least 80% of the trial21.
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response amplitude). d Response (F1) modulation index of cells in Fig. 3g, h (black-dashed, N= 232 cells), control (gray N= 42 cells) and with atropine
(green, N= 51 cells) to the temporal frequency stimulus (left). Response (F1) modulation index of cells in Supplementary Fig. 3g-h (black-dashed, N= 164
cells), baseline (gray, N= 41 cells) and under atropine (green, N= 51 cells) to the spatial frequency stimulus (right). P-values are shown in the inlet (K–S
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and stationary (black) responses for the atropine group (bottom row, baseline: ON cells: N= 25, unclassified cells: N= 42, OFF cells: N= 21)
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Selection of visually-responsive cells. The visual-evoked index was defined as
the sum of Euclidian distances between mean response amplitudes (F1) and the
mean permuted response amplitudes (F1-shuffled) of a neuron to each stimulus
condition (TF 1, 2, 4, 8, 16 Hz; SF 0.01, 0.02, 0.04, 0.08, 0.16 cpd). Permuted F1
responses were computed by randomizing the order of inter-spike intervals of each
trial/stimulus. The resulting spike train has the same number of spikes however
does not maintain the temporal structure. Units were deemed visual if the average
visual-evoked index across stimulus conditions exceeded 2.0 spikes/s, representing
a robust visual response (F1) to least one stimulus.

Modulation index. To quantify the modulatory effect of locomotion, we computed
the modulation index, defined as the difference between the unity line and the best
fit of a single degree polynomial function, constrained at (0, 0), to the mean firing
rate during quiescence and locomotion trials for each stimulus (Fig. 2b, d; Sup-
plementary Fig. 2b, d for examples).

Normalized F1. In order to compare F1 responses from neurons with different
firing rates, we computed the normalized F1 defined as the F1 of the original
responses divided by the F1 of the shuffled responses (see “Selection of visually-
responsive cells” above) obtained by permuting the order of inter-spike intervals
in each trial (Eq. (1)).

Normalized F1 ¼ F1
F1 permuted

ð1Þ

Tuning curves. Responses to temporal frequency stimuli were fitted with a
function composed of two-Gaussian described in Eqs. (2–3)46.

R ωð Þ ¼ b1 þ a� b1ð Þ ´ e� p�ω
s½ �2 forω<p ð2Þ

R ωð Þ ¼ b2 þ a� b2ð Þ ´ e� p�ω
s½ �2 forω>p ð3Þ

where R is the response amplitude (F1), ω is the temporal frequency, p is the peak
of temporal frequency, a is the response amplitude at the optimal temporal fre-
quency, s is the Gaussian spread, b1 is the baseline at low frequencies and b2 is the
baseline at high-frequencies.

Spike-count correlations. Noise correlations are a measure of trial-to-trial co-
variability, however do not provide information on the time-scale of the variability.
We computed the time-scale of the correlations during locomotion and visual
stimulation using the rCCG47,48, defined in Eq. (4).

rCCG tð Þ ¼
Pt

τ¼�t CCG τð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPt

τ¼�t ACG1 τð Þ� �
´

Pt
τ¼�t ACG2 τð Þ� �q ð4Þ

The CCG is the spike-train cross-correlogram (Fig. 5b) corrected with the shift-
predictor (that is the CCG computed by shifting the neural responses of one of the
neurons by one trial) to account for correlations induced by the stimulus.

Spike-train cross-correlograms (rCCG) (Fig. 5c) revealed that a 1 s integration
time window is sufficient to gather most correlations between neuron pairs
(Fig. 5d, 450 ms). Spike-count correlations were computed by calculating the
Pearson correlation between the responses of a neuron pair for each presentation of
the same stimulus (see Fig. 5a, b). Only stimuli with a minimum of 10 trials were
used. Jack-knife resampling (100 times) was used to estimate the correlation
between pairs. Values were averaged across stimulus conditions.

Cell grouping based on cycle responses. To group cells based on their responses
to the spatial frequency stimuli (Fig. 7), we computed cycle averages of responses
for individual neurons from responses in stationary trials. Cells with reduced firing
during visual stimulation were excluded (n= 29 cells). Cycle averages were con-
volved with a Gaussian kernel (2 ms half width) and normalized to the peak
response. K-means was then used to group responses in three groups (Fig. 7,
Groups 1, 2 and 3).

Grouping of dLGN neurons into transient ON, sustained ON, transient OFF and
sustained OFF categories was done by applying K-means to cycle averages
of responses to full field contrast reversal stimuli alternating at 1 Hz (Fig. 8). Neurons
responding to both ON and OFF phases of the stimulus were discarded (21 cells).

Analysis of pupil diameter and position. Pupil diameter and position were
extracted using custom-written code (mptracker, https://bitbucket.org/jpcouto/
mptracker). The eye margins were manually identified and used to estimate the
pixel-to-mm conversion assuming an average eye diameter of 6 mm. Parameters
for morphological operations, filtering and threshold were adjusted manually for
each dataset. Frames were smoothed with a Gaussian filter, and contrast adjusted
using adaptive histogram equalization. In some cases, morphologic open or close

operations were used to mask artifacts caused by out-of-focus whiskers crossing the
pupil. Frames were then threshold, contours extracted and fitted to an ellipse.
Contours that did not resemble an ellipse were discarded. When multiple contours
were present we selected the highest score based on the distance of the center of
mass to the center of the eye and fit quality. The diameter was computed as the
square root of the product of ellipse axis. Position was corrected by the corneal
reflection (when present) and converted to spherical coordinates.

Code availability. All custom-written data analysis code are available from the
corresponding author upon request.

Data availability
All data reported in this study are available from the corresponding author upon request.
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