19 research outputs found

    The AGeS2 (Awards for Geochronology Student research 2) Program: Supporting Community Geochronology Needs and Interdisciplinary Science

    Get PDF
    Geochronology is essential in the geosciences. It is used to resolve the durations and rates of earth processes, as well as test causative relationships among events. Such data are increasingly required to conduct cutting-edge, transformative, earth-science research. The growing need for geochronology is accompanied by strong demand to enhance the ability of labs to meet this pressure and to increase community awareness of how these data are produced and interpreted. For example, a 2015 National Science Foundation (NSF) report on opportunities and challenges for U.S. geochronology research noted: While there has never been a time when users have had greater access to geo-chronologic data, they remain, by and large, dissatisfied with the available style/ quantity/cost/efficiency (Harrison et al., 2015, p. 1). And the 2012 National Research Council NROES (New Research Opportunities in the Earth Sciences) report (Lay et al., 2012, p. 82) recommended: [NSF] EAR should explore new mechanisms for geochronology laboratories that will service the geochronology requirements of the broad suite of research opportunities while sustaining technical advances in methodologies. The AGeS (Awards for Geochronology Student research) program is one way that these calls are being answered

    Late Quaternary Faulting History of the Carrizal and Related Faults, La Paz Region, Baja California Sur, Mexico

    Get PDF
    The southwest margin of the Gulf of California has an array of active normal faults despite this being an oblique-divergent plate boundary with spreading centers that localized deformation along the plate boundary 2–3 million years ago. The Carrizal and Centenario faults form the western border fault of the Gulf of California marginal fault system within and south of La Paz Bay, and ∼20–30 km west of the capital city of La Paz, Baja California Sur, Mexico. Geologic and geomorphic mapping, optically stimulated luminescence (OSL) geochronology, and paleoseismic investigations onshore, compressed high-intensity radar pulse (CHIRP) profiling offshore, and analysis of uplifted marine terraces in the footwall of the offshore Carrizal fault provide some of the first numerical and geometrical constraints on late Pleistocene–Holocene faulting along the Carrizal fault. The onshore Carrizal fault has ruptured with up to ∼1–2 m of vertical displacement per event, likely producing ∼M 6.3–6.9 earthquakes, and at least two to three surface rupturing earthquakes have occurred since 22 ka. Onshore paleoseismic excavations and uplifted marine terraces on the western side of La Paz Bay both suggest offset rates of 0.1–0.2 mm/yr, with a footwall uplift rate of 0.13 mm/yr since 128 ka, and an approximately constant rate since marine oxygen-isotope stage (MIS) 11 terraces (420 ka). A CHIRP survey identified underwater fault scarps with heights ranging from 21 to 86 m on the Carrizal fault in La Paz Bay and from 3 to 5 m along the Centenario fault. The offshore Carrizal fault lies 8–10 km east of the western edge of La Paz Bay, forming a right step from the onshore Carrizal fault. The offshore Carrizal fault is the oldest fault of the fault system, and the fault likely grew in the latest Miocene to Pliocene in a complex way to the south toward the onshore Centenario and Carrizal faults. When the Alarcon spreading center started its modern rates at 2.4 Ma, the Carrizal fault likely slowed to the 0.1–0.2 mm/yr rates of the late Quaternary determined in this study

    Multiple Lines of Evidence for a Potentially Seismogenic Fault Along the Central-Apennine (Italy) Active Extensional Belt–An Unexpected Outcome of the MW6.5 Norcia 2016 Earthquake

    Get PDF
    The Apenninic chain, in central Italy, has been recently struck by the Norcia 2016 seismic sequence. Three mainshocks, in 2016, occurred on August 24 (MW6.0), October 26 (MW 5.9) and October 30 (MW6.5) along well-known late Quaternary active WSW-dipping normal faults. Coseismic fractures and hypocentral seismicity distribution are mostly associated with failure along the Mt Vettore-Mt Bove (VBF) fault. Nevertheless, following the October 26 shock, the aftershock spatial distribution suggests the activation of a source not previously mapped beyond the northern tip of the VBF system. In this area, a remarkable seismicity rate was observed also during 2017 and 2018, the most energetic event being the April 10, 2018 (MW4.6) normal fault earthquake. In this paper, we advance the hypothesis that the Norcia seismic sequence activated a previously unknown seismogenic source. We constrain its geometry and seismogenic behavior by exploiting: 1) morphometric analysis of high-resolution topographic data; 2) field geologic- and morphotectonic evidence within the context of long-term deformation constraints; 3) 3D seismological validation of fault activity, and 4) Coulomb stress transfer modeling. Our results support the existence of distributed and subtle deformation along normal fault segments related to an immature structure, the Pievebovigliana fault (PBF). The fault strikes in NNW-SSE direction, dips to SW and is in right-lateral en echelon setting with the VBF system. Its activation has been highlighted by most of the seismicity observed in the sector. The geometry and location are compatible with volumes of enhanced stress identified by Coulomb stress-transfer computations. Its reconstructed length (at least 13 km) is compatible with the occurrence of MW≥6.0 earthquakes in a sector heretofore characterized by low seismic activity. The evidence for PBF is a new observation associated with the Norcia 2016 seismic sequence and is consistent with the overall tectonic setting of the area. Its existence implies a northward extent of the intra-Apennine extensional domain and should be considered to address seismic hazard assessments in central Italy

    Early human impacts and ecosystem reorganization in southern-central Africa

    Get PDF
    Modern Homo sapiens engage in substantial ecosystem modification, but it is difficult to detect the origins or early consequences of these behaviors. Archaeological, geochronological, geomorphological, and paleoenvironmental data from northern Malawi document a changing relationship between forager presence, ecosystem organization, and alluvial fan formation in the Late Pleistocene. Dense concentrations of Middle Stone Age artifacts and alluvial fan systems formed after ca. 92 thousand years ago, within a paleoecological context with no analog in the preceding half-million-year record. Archaeological data and principal coordinates analysis indicate that early anthropogenic fire relaxed seasonal constraints on ignitions, influencing vegetation composition and erosion. This operated in tandem with climate-driven changes in precipitation to culminate in an ecological transition to an early, pre-agricultural anthropogenic landscape.info:eu-repo/semantics/publishedVersio

    ICDP workshop on the Lake Tanganyika Scientific Drilling Project: a late Miocene–present record of climate, rifting, and ecosystem evolution from the world's oldest tropical lake

    Get PDF
    The Neogene and Quaternary are characterized by enormous changes in global climate and environments, including global cooling and the establishment of northern high-latitude glaciers. These changes reshaped global ecosystems, including the emergence of tropical dry forests and savannahs that are found in Africa today, which in turn may have influenced the evolution of humans and their ancestors. However, despite decades of research we lack long, continuous, well-resolved records of tropical climate, ecosystem changes, and surface processes necessary to understand their interactions and influences on evolutionary processes. Lake Tanganyika, Africa, contains the most continuous, long continental climate record from the mid-Miocene (∼10 Ma) to the present anywhere in the tropics and has long been recognized as a top-priority site for scientific drilling. The lake is surrounded by the Miombo woodlands, part of the largest dry tropical biome on Earth. Lake Tanganyika also harbors incredibly diverse endemic biota and an entirely unexplored deep microbial biosphere, and it provides textbook examples of rift segmentation, fault behavior, and associated surface processes. To evaluate the interdisciplinary scientific opportunities that an ICDP drilling program at Lake Tanganyika could offer, more than 70 scientists representing 12 countries and a variety of scientific disciplines met in Dar es Salaam, Tanzania, in June 2019. The team developed key research objectives in basin evolution, source-to-sink sedimentology, organismal evolution, geomicrobiology, paleoclimatology, paleolimnology, terrestrial paleoecology, paleoanthropology, and geochronology to be addressed through scientific drilling on Lake Tanganyika. They also identified drilling targets and strategies, logistical challenges, and education and capacity building programs to be carried out through the project. Participants concluded that a drilling program at Lake Tanganyika would produce the first continuous Miocene–present record from the tropics, transforming our understanding of global environmental change, the environmental context of human origins in Africa, and providing a detailed window into the dynamics, tempo and mode of biological diversification and adaptive radiations.© Author(s) 2020. This open access article is distributed under the Creative Commons Attribution 4.0 License

    Analysis of Seismic Activity near Theodore Roosevelt Dam, Arizona, during the Occupation of the EarthScope/USArray Transportable Array

    No full text
    Rate and distribution of seismic activity are important indicators of the overall state of tectonic stress within a region. In regions characterized by low levels of seismicity, active fault surfaces are rarely visible at the surface, and the analysis of small-magnitude earthquakes at depth may be the most effective way to identify seismic hazard and risk from ambient tectonic activity. Further, studies of local and regional seismicity are also a direct way to examine geophysical and tectonic boundaries, although determining long-term seismicity levels requires good knowledge of the earthquake cycle. A major challenge in monitoring regions with low seismicity levels, therefore, is that long-term recording and/or deployment of sensitive instrumentation is required to provide adequate data. Seismicity patterns are of particular concern near large population centers and key infrastructure, such as power plants and dams. For instance, the Phoenix metropolitan area in southcentral Arizona receives its water through a network of canals fed by multiple man-made reservoirs located throughout the state. Analysis of seismicity patterns in the vicinity of these reservoirs and their associated dam structures is important because (1) the occurrence of an unexpectedly large earthquake may result in the failure of the dam structure resulting in adverse consequences to nearby human populations and the environment, and (2) the reservoir itself may induce seismicity and increase earthquake activity above previously recorded background levels (Simpson et al., 1986; Talwani, 1997; Gupta, 2002).National Science Foundation/[EAR-0548288]/NSF/Estados UnidosUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela Centroamericana de Geologí

    Tecolote volcano, Pinacate volcanic field (Sonora, Mexico): A case of highly explosive basaltic volcanism and shifting eruptive styles

    No full text
    Explosive basaltic eruptions have been documented in monogenetic volcanic fields, and recognizing the scales of their explosivity is important for understanding the full range of basaltic volcanism. Here we reconstruct one of the youngest eruptions in the Pinacate volcanic field (Sonora, Mexico) and estimate the volumes of the lava flows, scoria cone, and tephra units. The source vent of the eruption is Tecolote volcano (27 ± 6 ka, 40Ar/39Ar). There were two distinct episodes of tephra production, Tephra Unit 1 (T1) followed by Tephra Unit 2 (T2). T1 and T2 show different dispersal patterns, with T1 dispersed in an approximately circular pattern and T2 dispersed oblately trending SE and NW of the vent. Based on column height reconstructions and deposit characteristics, the T1-producing eruption was subplinian (15–18 km plume), with a calculated mass eruption rate ranging between 1.0 ± 0.6 × 107 kg/s and 2.2 ± 1.2 × 107 kg/s and corresponding durations between 79 ± 54 min and 38 ± 26 min, respectively. The T2-producing eruption was violent Strombolian (11 km plume) with a calculated mass eruption rate of 3.2 ± 1.4 × 106 kg/s and resulting duration of 193 ± 78 min. In addition to the two tephra units, Tecolote volcano produced seven morphologically distinct lava flows. The majority of lava volume production occurred before—and partly contemporaneously with—tephra production, and five small-volume lava flows were emplaced after pyroclastic activity terminated, indicating shifting and simultaneous eruptive styles. Of the total 0.23 km3 dense rock equivalent (DRE) erupted volume, the lava flows constitute the majority (0.17 km3 DRE), with 0.041 km3 DRE volume for the cone and a combined 0.026 ± 0.005 km3 DRE volume for the two tephra units. The geochemistry of the samples is consistent with that determined for other Pinacate rocks, which show a trend most similar to that of ocean island basalts and appears characteristically similar to other volcanic fields of the Basin and Range province
    corecore