93 research outputs found

    Transcriptome Sequencing Demonstrates that Human Papillomavirus Is Not Active in Cutaneous Squamous Cell Carcinoma

    Get PDF
    β-Human papillomavirus (β-HPV) DNA is present in some cutaneous squamous cell carcinomas (cuSCCs), but no mechanism of carcinogenesis has been determined. We used ultra-high-throughput sequencing of the cancer transcriptome to assess whether papillomavirus transcripts are present in these cancers. In all, 67 cuSCC samples were assayed for β-HPV DNA by PCR, and viral loads were measured with type-specific quantitative PCR. A total of 31 SCCs were selected for whole transcriptome sequencing. Transcriptome libraries were prepared in parallel from the HPV18-positive HeLa cervical cancer cell line and HPV16-positive primary cervical and periungual SCCs. Of the tumors, 30% (20/67) were positive for β-HPV DNA, but there was no difference in β-HPV viral load between tumor and normal tissue (P=0.310). Immunosuppression and age were significantly associated with higher viral load (P=0.016 for immunosuppression; P=0.0004 for age). Transcriptome sequencing failed to identify papillomavirus expression in any of the skin tumors. In contrast, HPV16 and HPV18 mRNA transcripts were readily identified in primary cervical and periungual cancers and HeLa cells. These data demonstrate that papillomavirus mRNA expression is not a factor in the maintenance of cuSCCs

    Cutaneous squamous cell carcinoma staging may influence management in users: A survey study.

    Get PDF
    PURPOSE: This study aims to determine whether there is consensus regarding staging and management of cutaneous squamous cell carcinoma (CSCC) across the various specialties that manage this disease. MATERIALS AND METHODS: A survey regarding CSCC high-risk features, staging, and management was created and emailed to cutaneous oncology experts including dermatology, head and neck surgery/surgical oncology, radiation oncology, and medical oncology. RESULTS: One hundred fifty-six (46%) of 357 invited physicians completed the survey. Depth of invasion (92%), perineural invasion (99%), histologic differentiation (85%), and patient immunosuppression (90%) achieved consensus (\u3e80%) as high-risk features of CSCC. Dermatologists were more likely to also choose clinical tumor diameter (79% vs. 54%) and histology (99% vs. 66%) as a high-risk feature. Dermatologists were also more likely to utilize the Brigham and Women\u27s Hospital (BWH) staging system alone or in conjunction with American Joint Committee on Cancer (AJCC) (71%), whereas other cancer specialists (OCS) tend to use only AJCC (71%). Respondents considered AJCC T3 and higher (90%) and BWH T2b and higher (100%) to be high risk and when they consider radiologic imaging, sentinel lymph node biopsy, post-operative radiation therapy, and increased follow-up. Notably, a large number of respondents do not use staging systems or tumor stage to determine treatment options beyond surgery in high-risk CSCC. CONCLUSION: This survey study highlights areas of consensus and differences regarding the definition of high-risk features of CSCC, staging approaches, and management patterns between dermatologists and OCS. High-risk CSCC is defined as, but not limited to, BWH T2b and higher and AJCC T3 and higher, and these thresholds can be used to identify cases for which treatment beyond surgery may be considered. Dermatologists are more likely to utilize BWH staging, likely because BWH validation studies showing advantages over AJCC were published in dermatology journals and discussed at dermatology meetings. Additional data are necessary to develop a comprehensive risk-based management approach for CSCC

    Enhanced metastatic risk assessment in cutaneous squamous cell carcinoma with the 40-gene expression profile test

    Get PDF
    Aim: To clinically validate the 40-gene expression profile (40-GEP) test for cutaneous squamous cell carcinoma patients and evaluate coupling the test with individual clinicopathologic risk factor-based assessment methods. Patients & methods: In a 33-site study, primary tumors with known patient outcomes were assessed under clinical testing conditions (n = 420). The 40-GEP results were integrated with clinicopathologic risk factors. Kaplan–Meier and Cox regression analyses were performed for metastasis. Results: The 40-GEP test demonstrated significant prognostic value. Risk classification was improved via integration of 40-GEP results with clinicopathologic risk factor-based assessment, with metastasis rates near the general cutaneous squamous cell carcinoma population for Class 1 and ≥50% for Class 2B. Conclusion: Combining molecular profiling with clinicopathologic risk factor assessment enhances stratification of cutaneous squamous cell carcinoma patients and may inform decision-making for risk-appropriate management strategies

    Validation of a 40-Gene Expression Profile Test to Predict Metastatic Risk in Localized High-Risk Cutaneous Squamous Cell Carcinoma

    Get PDF
    Background: Current staging systems for cutaneous squamous cell carcinoma (cSCC) have limited positive predictive value (PPV) for identifying patients who will experience metastasis. Objective: To develop and validate a gene expression profile (GEP) test for predicting risk for metastasis in localized, high-risk cSCC with the goal of improving risk-directed patient management. Methods: Archival formalin-fixed paraffin-embedded primary cSCC tissue and clinicopathologic data (n=586) were collected from 23 independent centers in a prospectively designed study. A GEP signature was developed using a discovery cohort (n=202) and validated in a separate, non-overlaping, independent cohort (n=324). Results: A prognostic, 40-gene expression profile (40-GEP) test was developed and validated, stratifying high-risk cSCC patients into classes based on metastasis risk: Class 1 (low-risk), Class 2A (high-risk), and Class 2B (highest-risk). For the validation cohort, 3-year metastasis-free survival (MFS) rates were 91.4%, 80.6%, and 44.0%, respectively. A PPV of 60% was achieved for the highest-risk group (Class 2B), an improvement over staging systems; while negative predictive value, sensitivity, and specificity were comparable to staging systems. Limitations: Potential understaging of cases could affect metastasis rate accuracy.Conclusion: The 40-GEP test is an independent predictor of metastatic risk that can complement current staging systems for patients with high-risk cSCC

    IMSA: Integrated metagenomic sequence analysis for identification of exogenous reads in a host genomic background

    Get PDF
    Metagenomics, the study of microbial genomes within diverse environments, is a rapidly developing field. The identification of microbial sequences within a host organism enables the study of human intestinal, respiratory, and skin microbiota, and has allowed the identification of novel viruses in diseases such as Merkel cell carcinoma. There are few publicly available tools for metagenomic high throughput sequence analysis. We present Integrated Metagenomic Sequence Analysis (IMSA), a flexible, fast, and robust computational analysis pipeline that is available for public use. IMSA takes input sequence from high throughput datasets and uses a user-defined host database to filter out host sequence. IMSA then aligns the filtered reads to a user-defined universal database to characterize exogenous reads within the host background. IMSA assigns a score to each node of the taxonomy based on read frequency, and can output this as a taxonomy report suitable for cluster analysis or as a taxonomy map (TaxMap). IMSA also outputs the specific sequence reads assigned to a taxon of interest for downstream analysis. We demonstrate the use of IMSA to detect pathogens and normal flora within sequence data from a primary human cervical cancer carrying HPV16, a primary human cutaneous squamous cell carcinoma carrying HPV 16, the CaSki cell line carrying HPV16, and the HeLa cell line carrying HPV18

    Genomic analysis of atypical fibroxanthoma

    Get PDF
    Atypical fibroxanthoma (AFX), is a rare type of skin cancer affecting older individuals with sun damaged skin. Since there is limited genomic information about AFX, our study seeks to improve the understanding of AFX through whole-exome and RNA sequencing of 8 matched tumor-normal samples. AFX is a highly mutated malignancy with recurrent mutations in a number of genes, including COL11A1, ERBB4, CSMD3, and FAT1. The majority of mutations identified were UV signature (C>T in dipyrimidines). We observed deletion of chromosomal segments on chr9p and chr13q, including tumor suppressor genes such as KANK1 and CDKN2A, but no gene fusions were found. Gene expression profiling revealed several biological pathways that are upregulated in AFX, including tumor associated macrophage response, GPCR signaling, and epithelial to mesenchymal transition (EMT). To further investigate the presence of EMT in AFX, we conducted a gene expression meta-analysis that incorporated RNA-seq data from dermal fibroblasts and keratinocytes. Ours is the first study to employ high throughput sequencing for molecular profiling of AFX. These data provide valuable insights to inform models of carcinogenesis and additional research towards tumor-directed therapy
    • …
    corecore