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Abstract

Metagenomics, the study of microbial genomes within diverse environments, is a rapidly developing field. The identification
of microbial sequences within a host organism enables the study of human intestinal, respiratory, and skin microbiota, and
has allowed the identification of novel viruses in diseases such as Merkel cell carcinoma. There are few publicly available
tools for metagenomic high throughput sequence analysis. We present Integrated Metagenomic Sequence Analysis (IMSA),
a flexible, fast, and robust computational analysis pipeline that is available for public use. IMSA takes input sequence from
high throughput datasets and uses a user-defined host database to filter out host sequence. IMSA then aligns the filtered
reads to a user-defined universal database to characterize exogenous reads within the host background. IMSA assigns a
score to each node of the taxonomy based on read frequency, and can output this as a taxonomy report suitable for cluster
analysis or as a taxonomy map (TaxMap). IMSA also outputs the specific sequence reads assigned to a taxon of interest for
downstream analysis. We demonstrate the use of IMSA to detect pathogens and normal flora within sequence data from a
primary human cervical cancer carrying HPV16, a primary human cutaneous squamous cell carcinoma carrying HPV 16, the
CaSki cell line carrying HPV16, and the HeLa cell line carrying HPV18.
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Introduction

Metagenomics, the study of microbial genomes within diverse

environmental samples, has rapidly developed as a field since its

introduction in 1998[1]. In 2012, a keyword search on the term in

Pubmed yielded over 1,200 articles, with topics ranging from large

environmental surveys to focused medical samples. Rapid

advances in high throughput sequencing have enabled acquisition

of large genomic datasets at reasonable cost, allowing explosive

advances in sequence-driven metagenomic research. Secondary

analysis of publicly available sequence datasets is also increasing as

analysis tools become available, and software for analysis of

metagenomic sequence datasets has had to keep pace with these

rapid developments.

A key area of metagenomics is the identification of microbial

sequences within a larger host organism. These studies have

enabled the study of normal and diseased human intestinal,

respiratory, skin and urogenital microbiota[2,3,4], identification of

novel viruses in diseases such as human Merkel cell carcinoma and

acute hemorrhagic fever[5,6] and in a variety of animal diseases

including avian proventricular dilatation disease, snake inclusion

body disease, and bee colony collapse[7,8,9]. A crucial element of

the analysis of metagenomic sequence data derived from a host

organism is the detection of non-host sequences within a complex

host genomic background. These exogenous sequences may

represent potential pathogens, commensal organisms, or labora-

tory contaminants such as vector sequence.

Large sequencing laboratories frequently develop an analysis

pipeline specific to the needs of the project at hand, often requiring

computing power in excess of what individual laboratories can

support. A number of groups describe general analysis methods in

which host reads are ‘‘subtracted’’ from the sequence readset by

homology to the human genome. These methods typically use

public tools such as BLAST or Bowtie[10,11] in combination with

proprietary code written by the authors[7,12,13,14]. There are

few tools available to groups with less experience in software

development for high throughput sequence analysis. PARSES

(Pipeline for Analysis of RNA-Seq Exogenous Sequences) is a

system that uses BLAST+ for rapid filtering of human reads

followed by MEGAN for visualization of metagenomic data[15].

PARSES is designed to work on a 64-bit desktop computer,

though with limited memory the time required for analysis of a

single dataset can require multiple days. It requires Novoalign, a

paid-license software, for alignment. PathSeq, a computational

subtraction method offered by the Broad Institute, relies on the

Amazon cloud computing environment to expand the computa-

tional power, but there are significant associated costs[16].

Other available tools are limited to analysis of host-filtered data.

MGAviewer is tool for metagenomic alignments, which can be

used for visualization of alignment data[17]. This tool is web-
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based, requiring no software installation; however it requires that

the user have the expertise and computational equipment to

produce the host filtered alignment data to be visualized.

MetaSAMS is an extension of SAMS (Sequence Analysis and

Management System), a system that aggregates other tools for

individual sequence reads or used-assembled contigs. MetaSAMS

also requires user host filtering prior to use[18].

The optimal system for metagenomic sequence analysis would

isolate exogenous sequences from a complex host genomic

background and characterize those sequences by taxonomic

classification. To apply to multiple study designs from different

research fields, the system would need to have flexibility in user-

selected and updatable databases, levels of stringency in mapping,

and a variety of filtering options. It would be fast and

comprehensive, with intelligible output, post-processing function-

ality, and would be scalable to laboratories running analysis on

computer clusters as well as those without.

This paper describes Integrated Metagenomic Sequence Anal-

ysis (IMSA), a computational analysis pipeline that meets the

above criteria and is available for public use (SourceForge). IMSA

takes input sequence from high throughput datasets and utilizes a

user-defined host database to filter out host sequence. IMSA then

aligns the filtered reads to a user-defined universal database to

characterize exogenous reads within the host background. IMSA

assigns a score to each node of the taxonomy based on read

frequency, and can output this as a taxonomy report suitable for

cluster analysis or as a taxonomy map (TaxMap). IMSA can also

output the specific sequence reads assigned to a taxon of interest

for downstream analysis.

Algorithm

IMSA uses an Action File to filter non-host reads and
align to universal database

IMSA uses an action file to guide the filtering and alignment

steps. A typical action file to filter a large read set against the

human genome might be:

quality

bowtie human doDivide = True

blat human | -fastMap

blat human

blast human maxEval-1e-15 | -word_size 24

blast human maxEval-1e-8

blast nt maxEval-1e-5 | —max_target_seqs 200

For each step there are additional parameter options which are

described in the user manual.

Quality filtering by default removes all reads with more than 15

bases with a quality less than 15. The user can define alternate

quality metrics or omit this step from the action file. For example,

‘‘quality 10 20’’ would remove reads where more than 10 bases

had a quality score less than 20.

For alignment actions, each line in the action file specifies two

steps. First, alignment is performed with the specified alignment

program, such as bowtie or BLAST. Next, the read set is filtered to

remove reads with a hit in the alignment results. Parameters for

filtering are before the pipe (‘‘|’’) whereas anything after the pipe is

sent directly to the alignment program. Some parameters, such as

‘‘maxEval’’ for blast can be used for both filtering and alignment

and will automatically be sent to the alignment program. By

default paired ends are treated as individual reads for maximum

sensitivity, but this behavior can be modified. Databases for the

alignment programs are defined in the IMSA configuration file so

the databases used and their location in the computer system can
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be easily modified. Similarly, the configuration file can specify an

ooc file for use in the blat alignment.

IMSA can run and filter bowtie, blat and blastn (new NCBI

version) alignments. Filtering the read set using the bowtie results

can be memory intensive so an option to divide the file into pieces

can be used to reduce the memory footprint. Blat and Blast

alignments can be performed on a SUN Grid cluster or run

straight, without a cluster.

The final step in the action file is the alignment to the universal

database. The input to this alignment is the host-filtered read set.

For this step, the blast results are used in subsequent analysis,

rather than simply being used to filter the read set.

For host filtering blast steps, the default is to set the

max_target_seqs parameters to 5 to short circuit searches for

reads that map multiple places. In the alignment to the universal

database, seen above on the last line of the action file, this

parameter is set higher so all matches for each read are found.

Taxonomy scores are calculated based on universal
database alignment and visualized with TaxMaps

Once IMSA has completed the filtering action file, the next step

is to process the universal database alignment results to yield the

IMSA reports. First, the blast results are processed to identify the

best alignment for each read. If a read hits many sequences in the

Figure 1. IMSA results on CaSki positive control dataset. A) Bar chart showing the number of reads in the dataset at each step of the IMSA
pipeline. B) Breakdown of the division of reads left after host filtering, as determined by BLAST to NCBI’s nt database. C) The number of reads that
align within each 100 base pair bin along the HPV16 genome in the unfiltered dataset compared to the IMSA filtered dataset.
doi:10.1371/journal.pone.0064546.g001
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universal database, only the alignment with the highest score is

kept. If a read aligns to multiple sequences with equally high

scores, all of the targets are reported. However, IMSA assigns a

score to each target indicating whether and how much the

sequence read is split. For example, a read that aligns to a single

sequence in the universal database is given a score of 1.0. If a read

hits two sequences in the universal database with equal scores,

both alignments get a score of 0.5. A read hitting three sequences

will get a score of 0.333 for each hit, etc. This treatment allows ties

to be kept, but the score assigned to each node is lower for non-

unique reads that likely represent conserved regions, and higher

for reads that are unique to that taxonomic node. The default

behavior is to keep all the ties scored in this way, but IMSA

provides the functionality to filter reads with scores below a given

threshold. Though this reduces sensitivity, it can be informative to

only look at reads with a unique best hit in the universal database.

Next, the taxonomy of the scored blast result file is calculated.

For this, the species of each hit in the universal database is

determined from the gi. For this step, IMSA assumes that the

universal database is the NCBI nucleotide transcript database

(nt)[19]. If the universal database is another database with titles in

a different format, the user will can customize the portion of the

code that extracts a gi from the fasta title and translates it into a

species. Once the targets are determined for each hit, IMSA then

retrieves the entire taxonomic record for those targets from NCBI.

IMSA uses the best read alignment scores assigned to each target

to calculate the score for each species, genus, family and division

with an aligned read in the sequence dataset. The taxonomy of

universal database results is listed in taxonomy report text files. In

addition, TaxMap bubble diagrams can be generated for species,

genus, family and division. IMSA generates text files in a format

ready to be interpreted into a diagram using the GraphViz open

source graphing software. These data can be used to for

downstream analysis to characterize the metagenome of the

sample or to identify potential pathogens.

Figure 2. TaxMap of bacterial reads in a primary cutaneous SCC. TaxMap of shows the breakdown of bacterial read scores at the kingdom,
family, genus and species levels. This TaxMap has been filtered to only show nodes with a score above 50.
doi:10.1371/journal.pone.0064546.g002
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IMSA includes additional tools for subsequent investigation.

The python script getFastaForTaxonomy takes a list of taxonomy

IDs (at any level) along with the fasta file of filtered reads and the

blast alignment to the universal database to create a fasta file of all

the reads aligning to the taxonomic IDs. The script speciesTo-

ClusterTable can take a set of species, genus, family, or division

files and create a table of results suitable for input into Cluster and

TreeView for visualization of the frequency in each sample of a

larger study[20,21].

Results

IMSA was used to analyze sequence data from four previously

published datasets to demonstrate the ability to detect human

papillomavirus in a variety of settings (Table 1). Genomic DNA

from the CaSki cell line, which contains HPV16, was sequenced

with 70 bp single end reads[22]. RNA-seq data was analyzed from

150bp paired-end reads from three samples: the HeLa cell line,

which contains HPV18, a primary cervical cancer containing

HPV16, and a primary periungual squamous cell carcinoma

containing HPV16[23].

The action file specified for these examples consisted of a quality

filtering step followed by Bowtie, two iterations of Blat with

increasing stringency, four iterations of BLAST, and an alignment

to nt as the universal database, as shown below:

quality

bowtie human

blat human | -fastMap

blat human

blast human maxEval = 1e-18 | -word_size 40

blast human maxEval = 1e-15 | -word_size 32

blast human maxEval = 1e-10 | -word_size 24

blast human maxEval = 1e-8

blast nt maxEval = 1e-15 | -max_target_seqs 200

Output for the CaSki cell line is shown in Figure 1. After host

filtering (Figure 1a), the remaining reads were mapped to nt

(Figure 1b). The majority of non-host reads were viral; the fraction

of mammalian reads left over after host filtering represented

sequence that was likely human derived but differed due to low

quality or sufficient divergence from human to pass host filtering

steps. IMSA captured 91% and 94% of the HPV reads present in

the cell line datasets and 86% and 98% of the HPV reads present

in the primary cancer datasets. Viral reads that were removed in

host filtering were primarily those removed for poor quality;

Figure 1c demonstrates unbiased loss of viral reads across the HPV

genome in quality filtering.

Our method for quantifying exogenous sequence goes beyond a

simple read count to create a score for each node of taxonomy

(Figure 2). This method allows reads in conserved regions of

pathogen genomes to contribute fractional scores to multiple

species; a score of 1 is assigned only when the read is a unique

match to a single species. Additional options allow the user to

define the maximum number of mapped ties allowed. Allowing

ties is optimal for exploratory analysis; evaluating uniquely

mapped reads will increase specificity in scoring but reduce

sensitivity.

To determine the accuracy for a read library containing

multiple strains of the same organism, we combined the data from

the two readsets derived from HeLa and Caski cells. Because these

libraries were prepared and sequenced differently, we pulled the

forward read of the 54bp, paired end HeLa library and the first 54

Figure 3. TaxMap of viral reads in a combined HeLa and CaSki
dataset. IMSA is able to accurately identify both alphapapillomaviridae
species 7 (HPV18) and species 9 (HPV16) in the merged dataset.This
TaxMap has been filtered to only show nodes with a score above 50.
doi:10.1371/journal.pone.0064546.g003

Figure 4. Comparison of filtering databases. NCBI’s RefSeq database includes viral sequence mis-annotated as human; using this as a host filter
results in loss of HPV16 reads (black). Filtering against the human genome (hg19) alone allows detection of these reads (gray).
doi:10.1371/journal.pone.0064546.g004

Integrated Metagenomic Sequence Analysis

PLOS ONE | www.plosone.org 5 May 2013 | Volume 8 | Issue 5 | e64546



bases of reads in the 70bp single end CaSki library into a single

dataset for analysis. IMSA accurately identified both alphapapil-

lomaviridae species 7 (HPV18) and species 9 (HPV16) in the

merged dataset at the expected frequency (Figure 3).

The choice of host filtering database(s) will impact the results

obtained. Figure 4 demonstrates CaSki cell line data filtered

against the human RefSeq RNA database as well as HG19, to

remove reads annotated as human. However, at three positions on

the viral genome the number of viral reads detected drops to zero.

A parallel attempt to filter against a HG19 alone reveals HPV16

reads in those regions. This is due to misannotation in the RefSeq

human RNA database, in which sequences are annotated as

human but contains HPV16 sequence (in specific, we found gis

12300658, 12301139, and 12306164 to contain HPV16 sequence

annotated as human but this is not an exhaustive list). This

misannotation results in viral reads being removed as ‘‘host’’ when

filtered against a database of human RefSeq sequences.

Discussion

We present IMSA, a system for Integrated Metagenomic

Sequence Analysis of high throughput sequence data. IMSA can

be used to analyze data from genomic or RNA-seq datasets. IMSA

takes a user-defined action file to isolate exogenous sequences from

a host genomic background. These sequences are characterized by

taxonomic classification and can be delivered in a taxonomy

report or visualized with TaxMap.

The taxonomy report delivers a comprehensive picture of the

exogenous reads present in each sequence dataset. The use of a

universal database for characterizing non-host reads is improve-

ment over metagenomic analysis techniques that screen sequence

data solely against curated bacterial or viral databases. TaxMap

provides a visual method for evaluating the diversity of exogenous

species present.

Our post-processing functionality includes the ability to retrieve

reads derived from a taxon of interest with the python script

getFastaForTaxonomy. If the results reveal a number of reads

aligning to a particular species of interest, obtaining the fasta file of

all reads from that species allows ready assembly with tools such as

Edena[24], or design of PCR primers for validation studies. In

addition to identifying and quantifying the relative abundance of

pathogen sequence, the isolated reads aligning to the target

pathogen can be used for more detailed downstream analysis. For

example, reads derived from RNA-seq data could be used to

determine relative pathogen gene expression levels or to identify

common gene pathways expressed by pathogen in a sample set.

This is a benefit of IMSA over 16S-based pyrosequencing.

The python script speciesToClusterTable will output IMSA

scores in a format for Cluster /Treeview analysis. Looking at the

species results across multiple samples can frequently yield clear

patterns that may not be visible looking at individual results. For

example, a particular species may not be the most common result,

or may be found across all the samples, but examination with

Cluster/TreeView may show that the species is consistently more

common in samples in a specific state (i.e. all the diseased samples).

Filtered IMSA files can also be used with other existing tools such

as MGAviewer, metaSAMS, and MEGAN.

IMSA is scalable to small or large laboratories. It can be run on

a desktop computer or on a SUN Grid cluster. The time required

to process a sample is dependent on multiple parameters including

the size of the dataset, the filtering parameters, and the

computational power allocated to processing. Certain steps such

as the Bowtie and BLAST can be run in parallel on multiple

processors, while others such as Blat are single threaded. In

addition, certain steps are fixed, such as loading the human

genome into memory, while others will scale with readset size.

Thus the speed of processing does not necessarily scale in a linear

fashion with dataset size- smaller readsets will take more time per

million reads but less time overall.

We calculated processing speeds based on various ongoing

analyses in our laboratory. 50bp single end read data required

4:38 hours per million reads per node; 30 million reads run on 20

processors took 6:57 hours on the wall clock. 80bp single end read

data required 6:32 hours per million reads per node; 30 million

reads run on 5 processors took 39:34 hours on the wall clock. 50bp

paired end read data required 1:58 hours per million reads per

node; 150 million reads run on 10 processors took 19:31 hours on

the wall clock. In this study, the analysis described above was done

on a Linux cluster with SUN Grid Engine. The CaSki dataset

included 2 million single end reads and took 57 minutes to analyze

using 5 processors. The primary cervical carcinoma dataset

included 2 million paired end reads and took 47 minutes to

analyze using 10 processors.

The action file is designed to be flexible, allowing the user to

select the appropriate host database for filtering and universal

database for mapping exogenous reads. With the filtering

parameters described in our test case, an 86% detection efficiency

would translate to a probability of failing to detect any reads from

a virus present in 10 reads at 0.1410, or 1 in 36109. Given IMSA’s

flexible algorithm, the sensitivity can be increased by reducing the

stringency of the filter. Decreased stringency speeds host filtering

and allows more potential pathogen reads, but delays downstream

analysis as host reads that pass filters will slow mapping to the

universal database. In contrast, increased stringency in host

filtering requires more time and computational resources, but

thoroughly removes host reads before potential pathogen reads are

mapped to the universal database. The tradeoff is that potential

pathogen reads may be lost in stringent filters. Our laboratory

typically optimizes the action file for each experiment by splitting

out 10% of the sequence dataset and running test action files to

quickly assess the efficiency of filtering with a variety of parameters

before moving forward with the complete readset. Our experience

is that the most efficient method combines the initial speed of low

stringency filtering steps on the total dataset followed by

successively more stringent filters as the dataset becomes smaller

with each step. IMSA is designed for use on Illumina datasets, but

is flexible enough to be used on 454 read sets by adjusting the

action file alignments and parameters for the longer 454 read

length.

Overall, IMSA delivers a flexible, comprehensive method for

metagenomic analysis of high-throughput sequence datasets. It is a

valuable addition to existing tools for the rapidly growing field of

metagenomic research.
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