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Abstract 72 
 73 
Background: Current staging systems for cutaneous squamous cell carcinoma (cSCC) 74 

have limited positive predictive value (PPV) for identifying patients who will experience 75 

metastasis. 76 

Objective: To develop and validate a gene expression profile (GEP) test for predicting 77 

risk for metastasis in localized, high-risk cSCC with the goal of improving risk-directed 78 

patient management. 79 

Methods: Archival formalin-fixed paraffin-embedded primary cSCC tissue and 80 

clinicopathologic data (n=586) were collected from 23 independent centers in a 81 

prospectively designed study. A GEP signature was developed using a discovery cohort 82 

(n=202) and validated in a separate, non-overlaping, independent cohort (n=324).   83 

Results: A prognostic, 40-gene expression profile (40-GEP) test was developed and 84 

validated, stratifying high-risk cSCC patients into classes based on metastasis risk: 85 

Class 1 (low-risk), Class 2A (high-risk), and Class 2B (highest-risk). For the validation 86 

cohort, 3-year metastasis-free survival (MFS) rates were 91.4%, 80.6%, and 44.0%, 87 

respectively. A PPV of 60% was achieved for the highest-risk group (Class 2B), an 88 

improvement over staging systems; while negative predictive value, sensitivity, and 89 

specificity were comparable to staging systems.  90 

Limitations: Potential understaging of cases could affect metastasis rate accuracy. 91 

Conclusion: The 40-GEP test is an independent predictor of metastatic risk that can 92 

complement current staging systems for patients with high-risk cSCC. 93 

 94 
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 97 

Capsule Summary: 98 

• Development and independent validation of a 40-gene expression profile (40-99 

GEP) test demonstrated improved metastasis risk stratification of patients with 100 

high-risk cutaneous squamous cell carcinoma (cSCC). 101 

• Incorporation of 40-GEP prognostication into clinical practice could support risk-102 

aligned patient management decisions by complementing current staging 103 

systems. 104 

 105 
  106 



 
 

Introduction 107 
 108 

Incidence of cutaneous squamous cell carcinoma (cSCC) has increased 109 

substantially in recent decades,1, 2 with concurrent increases in morbidity and mortality. 110 

Currently, estimated cSCC incidence ranges from 1 to 2.5 million cases annually in the 111 

US,2–5 and deaths from cSCC are estimated to exceed deaths from melanoma.2, 4–11 112 

The rates of metastasis of tumors with high-risk features can surpass 20%.3, 10, 12–19 113 

Once metastasis is detected, 5-year survival rates drop to 50-83% and <40% for 114 

patients with regional and distant metastasis, respectively.16, 20–22 Since early detection 115 

of metastasis is correlated with better outcomes, accurate identification of patients at 116 

high risk for metastasis is critical, potentially allowing for early adjuvant therapy, while 117 

also avoiding overtreatment of low-risk tumors.   118 

Clinicopathologic staging and national guidelines are used to risk-stratify and 119 

manage patients. National Comprehensive Cancer Network (NCCN) guidelines assign 120 

patients with local disease to low- and high-risk groups using clinicopathologic features 121 

associated with recurrence, providing broad recommendations for surgical and 122 

therapeutic interventions.3 The American Joint Committee on Cancer (AJCC) Staging 123 

Manual uses clinicopathologic features of the primary tumor with four T-stages grouped 124 

into binary risk groups (T1-T2 vs. T3-T4).23 Positive predictive value (PPV) is low for 125 

NCCN and AJCC (14%–17%),24–27 as many patients categorized as high risk do not 126 

develop advanced disease.28, 29 The Brigham and Women’s Hospital (BWH) staging 127 

system includes four T-stages (T1, T2a, T2b, and T3) categorizing tumors by number of 128 

high-risk features observed. For BWH, T2b-T3 tumors are generally combined to 129 



 
 

identify “high-risk” disease. Sensitivity is comparable between BWH and AJCC, while 130 

PPV for BWH (24%-38%) is superior to AJCC.24–27  131 

 To improve identification of patients with primary cSCC at high risk for metastatic 132 

disease, a 40-gene expression profile (40-GEP) test was developed. Gene expression 133 

profiling (GEP) of primary cSCC tumors with known outcomes was used to develop a 134 

prognostic molecular algorithm. We report validation of this 40-GEP test which identifies 135 

three classes (Class 1, 2A, and 2B) of cSCC patients with different likelihood of 136 

developing metastasis within 3 years of diagnosis. The 40-GEP test is an independent 137 

predictor of outcomes and improves upon risk prediction with staging systems, 138 

supporting its potential clinical use in conjunction with standard staging and patient 139 

management criteria.    140 

 141 

Methods 142 

Study Design 143 

A prospectively-designed biomarker study was conducted using archival primary 144 

cSCC formalin-fixed paraffin-embedded tissue. The primary endpoint was 3-year 145 

metastasis-free survival (MFS), including regional and distant metastatic events. 146 

Regional metastasis was defined as metastasis within the regional nodal basin, 147 

including satellite or in-transit metastasis, but excluding local recurrence. Distant 148 

metastasis was defined as metastasis beyond the regional lymph node basin. Disease-149 

specific death, a secondary endpoint, was defined as documented death from cSCC. All 150 

cases included in the study were primary cSCC tumors (Figure 1).  Cases with local 151 

recurrence only were not considered as having a metastatic event. 152 



 
 

Expression of 140 candidate genes, identified by discovery efforts or literature 153 

review30–36, was determined for samples in the discovery and development cases 154 

(cohort 1, n=202). Deep machine learning was applied to expression data from 122 155 

genes passing initial expression thresholds to select genes for further signature training. 156 

See Data Supplement for detailed methods of discovery/development. The algorithm 157 

encompassing the 40-GEP assay was selected based on prognostic performance in the 158 

training cases (n=122). Coefficients for each gene in the algorithm were locked prior to 159 

validation. Power calculations indicated that the validation cohort (cohort 2, samples 160 

passing QC, n=321) could detect a hazard ratio (HR) of 2.1 for metastasis (90% power, 161 

alpha=0.05). After validation of the algorithm using cohort 2, clinically actionable 162 

cutpoints for probability scores were set to optimize negative predictive value (NPV), 163 

PPV, and sensitivity for metastasis risk groups (Class 1: low-risk, Class 2A: high-risk, 164 

Class 2B: highest-risk). 165 

Patient Enrollment and Specimen Acquisition  166 

Primary cSCC tissue and associated de-identified clinical data were obtained 167 

from 23 independent centers following Institutional Review Board approval. 168 

Clinicopathological and outcomes data were entered into a secure case report form. All 169 

reported patient data were monitored on-site, including review of all available pathology 170 

reports and medical records. Per the ongoing study protocol, 586 archival cSCC cases 171 

were received between the study onset (September 3, 2016) and October 1, 2019 172 

(Figure 1). Complete protocol inclusion/exclusion criteria are summarized in the Data 173 

Supplement. The protocol targeted enrollment of cases with at least one high-risk 174 

feature as defined by NCCN guidelines or by AJCC or BWH staging >T1, either at the 175 



 
 

patient or tumor level, to model the high-risk cSCC patient population for whom the 40-176 

GEP assay was developed. For the validation cohort, monitors reviewed 98.4% 177 

(314/319) of all definitive surgery pathology reports. Staging incorporated all available 178 

data in the medical record and centralized pathology review by a board-certified 179 

dermatopathologist.  180 

Assay Methods and Statistical Analyses 181 

Tissue sections (5µm) were freshly cut at contributing institutions and collected at 182 

a central CAP-accredited laboratory. Tumor tissue, including tumor stroma, was 183 

macrodissected from slides and processed to generate RNA and cDNA as previously 184 

described.37 cDNA underwent a 14-cycle preamplification step prior to dilution, and then 185 

was mixed 1:1 with 2x TaqMan Gene Expression Master Mix. Quantitative PCR was 186 

then performed using high-throughput microfluidics gene cards containing primers 187 

specific to the genes of interest and the QuantStudio 12K Flex Real-Time PCR System 188 

(Life Technologies). Each sample was run in triplicate with randomization onto plates to 189 

distribute metastatic and nonmetastatic cases. Laboratory personnel and clinical 190 

monitoring staff were blinded to GEP results during data capture. Statistical analysis 191 

was performed as previously described using standard methods for Kaplan-Meier 192 

analysis, multivariable Cox regression analysis, accuaracy metrics, and sensitivity 193 

analysis (see Data Supplement).  194 

 195 

Results 196 

Development of the Prognostic Signature 197 



 
 

To identify a prognostic signature capable of patient stratification by risk for 198 

regional or distant metastasis from primary cSCC tumors, deep machine learning was 199 

applied to training cohort gene expression data (n=122) (Supplemental Table 1). The 200 

algorithm selected for validation was comprised of two gene expression signatures, 201 

inclusive of 6 control and 34 discriminant genes, with modeling performed using neural 202 

networks. This 40-GEP algorithm generated linear scores for probability of metastasis 203 

from each signature. 204 

Independent Validation of the 40-GEP Prognostic Signature 205 

To validate the prognostic capability of the 40-GEP, the algorithm was applied to 206 

an independent validation cohort comprised of 321 primary cSCC cases (52 with 207 

documented metastasis, and 269 cases without an event) (Table 1). The algorithm 208 

demonstrated a statistically significant ability to stratify metastatic risk. The validated 40-209 

GEP was then used to define risk groups with increasing metastasis risk: Class 1 (low-210 

risk, n=203), Class 2A (high-risk, n=93), and Class 2B (highest-risk, n=25). Significantly 211 

different 3-year MFS rates were observed for Class 1 (91.6%), Class 2A (80.6%), and 212 

Class 2B (44.0%) groups following Kaplan-Meier survival analysis (Figure 2, log-rank 213 

test, p<0.0001). Higher 40-GEP Class was associated with a statistically significant 214 

increase in risk for metastasis and disease-specific death. HRs for metastasis for Class 215 

2A and Class 2B were 2.44 and 10.15 (p<0.01, p<0.0001), and for disease-specific 216 

death were 5.4 and 8.8 (p<0.05, p<0.01), respectively. Of the 13 reported deaths due to 217 

cSCC, 10 were classified as Class 2. 218 

Prognostic Accuracy of the 40-GEP Test Compared to Staging Systems 219 



 
 

The 40-GEP signature was an independent predictor of risk when analyzed in a 220 

bivariable model with AJCC (Class 2A HR=2.15, p=0.021; Class 2B HR=9.55, 221 

p<0.0001) or BWH (Class 2A HR=2.27, p=0.016; Class 2B HR=8.72, p<0.0001) T-stage 222 

(Table 2 and Supplemental Table 2). Multivariable analysis with individual 223 

clinicopathological features also demonstrated independent prognostic value of the 40-224 

GEP signature (Supplemental Table 3). Supplemental Table 4 reports the number of 225 

cases by metastatic outcome, 40-GEP class, and NCCN risk group or T-stage. Cases 226 

with missing clinicopathologic data (n=168, most missing tumor thickness) were staged 227 

in the bivariable analysis with assumption of null values for missing data. Since this may 228 

have resulted in understaging by T-stage or binary T-stage in 34 or 6 cases, 229 

respectively, via BWH, and 164 cases via AJCC, posthoc sensitivity analyses were 230 

performed. These analyses yielded similar effect sizes and significance, demonstrating 231 

the robustness of the primary analysis despite the assumption of null values for missing 232 

data (Supplemental Table 5).  233 

Overall, accuracy metrics for AJCC (low T1/T2 vs. high T3/T4) and BWH (low 234 

T1/T2a vs. high T2b/T3) staging aligned with previously published data (Table 3); 235 

although, the percentages of metastases occurring in low T-stages were higher than 236 

previously reported (62% and 75% for AJCC and BWH stages, respectively).24–27 The 237 

40-GEP Class 2B group demonstrated a PPV of 60% compared to 32.8%, 35.1%, and 238 

16.7% for AJCC, BWH, and NCCN high-risk groups, respectively (Table 3). The Class 1 239 

group was associated with a 91.1% NPV compared with the 87.7%, 86.3%, and 90.5% 240 

NPV for AJCC, BWH, and NCCN, respectively. Likelihood ratios, combining sensitivity 241 

and specificity to indicate probability that metastasis will (+LR) or will not (-LR) occur 242 



 
 

based on Class result, are reported in Table 3. Importantly, 63.0% of the high-risk 243 

NCCN cases were identified as low-risk Class 1 by the 40-GEP. 244 

 245 

Discussion 246 

This study reports the discovery, development, and validation of a 40-GEP test 247 

that classifies cSCC patients into prognostic groups; low-risk for metastasis (Class 1, 248 

91.4% 3-year MFS), and high- and highest-risk for metastasis (Class 2A, 80.6%; and 249 

Class 2B, 44.0% 3-year MFS). The study was designed to include cases with at least 250 

one NCCN high-risk feature to model a high-risk cSCC population (93.5%). This is 251 

reflected in the overall 16.2% rate of regional or distant metastasis, compared with 252 

previously reported rates of <6% for the general cSCC patient population.5, 10, 15   253 

Clinical decision-making has benefitted from development of multi-analyte 254 

algorithmic GEP tests that report metastasis risk independently of clinicopathologic 255 

features. GEP tests currently offered for breast cancer38–40, prostate cancer41, 42, uveal 256 

melanoma43, 44, and cutaneous melanoma45–47 have been shown to help guide 257 

treatment. NCCN guidelines for cSCC recommend that patients with certain high-risk 258 

features consider pre-operative nodal staging, elective nodal surgery, Mohs 259 

micrographic surgery or standard excision with wider margins, adjuvant radiation, or 260 

clinical trial enrollment.3, 48–51 One challenge with clinicopathologic-based guidelines is 261 

that high-risk features are often undetected through initial biopsy and, therefore, often 262 

cannot be used for surgical planning. The 40-GEP can be performed on superficial 263 

biopsies, thus enabling improved surgical decision making using molecular risk 264 

refinement prior to full capture of histopathological features on excisional specimens. In 265 



 
 

addition, as the 40-GEP class results demonstrated prognostic value independent from 266 

staging, this risk assessment may help guide post-operative decision making.52  267 

Contemporary staging systems are limited in accuracy for identifying patients 268 

who are at high risk for developing metastatic disease, as only 24%-38% of patients 269 

with BWH stage T2b/T3 tumors and 14%-17% of AJCC T3/T4 patients develop 270 

metastasis.24–27 NCCN’s expansive definition of high-risk cSCC suffers from a still lower 271 

PPV and risks overtreating patients. While cSCC guidelines recommend considering 272 

specific interventions for patients with high-risk tumors, lack of accurate assessment of 273 

metastatic risk prevents some physicians from confidently selecting nodal staging, 274 

adjuvant therapy, clinical trials, or increased surveillance. Prognostic tools that improve 275 

the ability to identify both low- and high-risk patients within the high-risk cSCC spectrum 276 

would facilitate risk-appropriate reductions in intensity of surveillance and treatment for 277 

patients with low-risk biology, and improved allocation of healthcare resources to high-278 

risk patients. 279 

The 40-GEP test achieved a PPV of 60% for Class 2B tumors, exceeding the 280 

PPV observed for BWH and AJCC systems in this study (35.1% and 32.8%, 281 

respectively); while maintaining comparable accuracy metrics for NPV, sensitivity, and 282 

specificity. The NPV for the 40-GEP test was 91.1% for Class 1 vs. Class 2 tumors, 283 

which was comparable to NCCN and 5% higher than BWH and AJCC. Likelihood ratios 284 

show that a Class 2B result is associated with significantly increased probability for 285 

metastasis and a Class 1 result with lower probability. Thus, incorporation of a Class 1 286 

result for clinically-defined high-risk tumors could identify a substantial group of patients 287 

with biologically low-risk tumors who could be considered for de-escalation of 288 



 
 

management, potentially ruling out adjuvant treatment plans and nodal surgical staging. 289 

On the other hand, a Class 2B result could identify a group of patients who may benefit 290 

from adjuvant interventions and surveillance. 291 

Descriptive molecular characterization of cSCC has previously identified genes 292 

involved in disease pathogenesis.53–56 Studies comparing specimens from various 293 

stages of progression (e.g., in situ to invasive cSCC) have reported differential 294 

expression of various genes and miRNAs.30, 57–67 However, few studies of prognostic 295 

biomarkers from primary tumors have been reported.68, 69 Many of the discriminant 296 

genes comprising the 40-GEP algorithm (Supplemental Table 6) have been previously 297 

reported in cSCC and/or have known functions in cancer-relevant pathways. Some 298 

genes in the 40-GEP signature do not have an established role in cSCC biology, but 299 

future studies have potential to identify how these genes promote cSCC metastasis. 300 

As with all archival studies, there is possible bias in specimen collection based 301 

on availability of tissue and adherence to protocol inclusion/exclusion criteria. This may 302 

account for the high fraction of metastases occurring in cases that were low-stage by 303 

BWH and AJCC criteria. Since not all histological features used for staging are 304 

consistently reported in pathology and Mohs reports, cases may be understaged. To 305 

address this problem, all specimens underwent central pathology review and restaging 306 

according to contemporary staging criteria with medical records reviewed for any 307 

additional high-risk features. Because cases excised via Mohs generally have no tissue 308 

available for review other than the shave biopsy, under-reporting of high-stage features 309 

and understaging may result if features were not reported in surgical notes or if a 310 

surgical report was not available for review. The low sensitivities of AJCC and BWH 311 



 
 

staging reported herein relative to other cohorts (39% and 25%, respectively, versus 312 

78% and 73% recently reported24) are reflective of the high fraction of metastases 313 

occurring in low-stage cases in the present cohort, potentially a result of understaging. 314 

However, sensitivity analysis supported that missing features had negligible impact on 315 

the prognostic capacity of the 40-GEP. Additional multi-center cohort studies in target 316 

populations for 40-GEP testing should be undertaken to confirm the PPVs and NPVs 317 

reported herein, and to determine to what degree they are reflective of the high-risk 318 

cSCC population. However, the 16% metastasis rate of the present NCCN high-risk 319 

validation cohort, as well as AJCC and BWH PPVs that were comparable to prior 320 

studies, indicate a likelihood of high reliability for the 40-GEP.   321 

As cSCC poses a significant burden on the healthcare system with increasing 322 

morbidity and mortality, it is essential to identify which patients warrant additional 323 

surveillance and therapeutic interventions and which are low risk and, thus, could avoid 324 

unnecessary procedures. Staging systems based on clinicopathological features alone 325 

are limited in their ability to accurately stratify patients, primarily due to low PPV. The 326 

40-GEP demonstrated a PPV of 60% in the present study, the highest reported to date 327 

for cSCC; thus, identifying a patient group with a 60% risk for metastasis. Coupling 328 

clinicopathological features with tumor-intrinsic risk, as per the 40-GEP prognostic test 329 

developed and validated herein, has potential to improve patient outcomes, quality of 330 

life, and appropriate allocation of healthcare resources for cSCC patients.  331 

 332 
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Figure Legends 558 

Figure 1. Cutaneous Squamous Cell Carcinoma. Study cohorts: tissue samples and 559 

associated data acquisition. CRF, case report form; f/u, follow-up; event, regional or 560 

distant metastasis; QC, quality control. Protocol and monitoring are ongoing, 561 

assessment performed Oct. 1, 2019. To ensure proper classification, the training set 562 

was restricted to cases with a documented metastatic event or at least 4 years of follow-563 

up. Cases not included in this report will be used for a second validation cohort. QC 564 

criteria were different between discovery and validation assays.  565 

 566 

Figure 2. Cutaneous Squamous Cell Carcinoma. Kaplan-Meier analysis of the 40-GEP 567 

prognostic test and outcomes from independent validation of cutaneous cSCC cases 568 

(n=321). 569 
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Tables: 571 
Table 1: Demographics and clinical characteristics of validation cohort (n=321) 572 

Feature All  
(n=321) 

Non Met  
(n=269) 

Regional/distant met 
(n=52) p value 

Age:  
Median years (range) 

70 (34-95) 70 (34-95) 72 (44-90) 0.84 

Male sex  235 (73.2%) 191 (71.0%) 44 (84.6%) 0.042 

Caucasian 320 (99.7%) 269 (100%) 51 (98.1%) 0.16 

Non-Hispanic* 312 (97.2%) 262 (97.4%) 50 (96.2%) 0.62 

Immune deficient** 76 (23.7%) 59  (21.9%) 17 (32.7%) 0.10 

Prior Hx of SCC 135 (42.1%) 109 (40.5%) 26 (50.0%) 0.22 

Located on H&N 214 (66.7%) 171 (63.6%) 43 (82.7%) 0.007 

Tumor diameter:  
Mean cm (StDev)*** 1.8 (+/-1.9) 1.6 (+/-1.8) 2.8 (+/-2.4) <0.0001 

Tumor thickness:  
Mean mm (StDev)# 

3.9 (+/-6.4) 3.4 (+/-6.6) 7.2 (+/-3.6) <0.0001 

Poorly differentiated 36 (11.2%) 22 (8.2%) 14 (26.9%) <0.0001 

Clark Level IV / V 62 (19.3%) 49 (18.2%) 13 (25.0%) <0.0001 

PNI## 
   present (≥0.1mm) 7 (2.2%) 5 (1.9%) 2 (3.9%) 

<0.0001    present (<0.1mm or     
   unknown caliper) 29 (9.0%) 16 (6.0%) 13 (25%) 

   not present 285 (88.8%) 248 (92.2%) 37 (71.2%) 

Invasion into fat 43  (13.4%) 28 (10.4%) 15 (28.9%) 0.0004 

Definitive surgery MMS### 256 (79.8%) 222 (82.5%) 34 (65.4%) 0.032 

AJCC8 T Stage 

     T1 201 (62.6%) 175 (65.1%) 26 (50%) 

0.001 
     T2 59 (18.4%) 53 (19.7%) 6 (11.5%) 

     T3 54 (16.8%) 36 (13.4%) 18 (34.6%) 

     T4 7 (2.2%) 5  (1.9%) 2 (3.9%) 

BWH T Stage 

     T1 186 (57.9%) 166 (61.7%) 20 (38.5%) 

0.0004 
     T2a 98 (30.5%) 79 (29.4%) 19 (36.5%) 

     T2b 30 (9.4%) 19 (7.1%) 11 (21.2%) 

     T3 7 (2.2%) 5 (1.9%) 2 (3.9%) 

NCCN High risk 300 (93.5%) 250 (92.9%) 50 (96.2%) 0.39 



 
 

NOTE. Data analyzed using Chi-square test or Kruskal-Wallis F test. 
Abbreviations: Hx, history; SCC, squamous cell carcinoma; H&N, head and neck; StDev, standard deviation; PNI, 
perineural invasion; MMS, Mohs micrographic surgery; AJCC8, American Joint Committee on Cancer, Cancer 
Staging Manual, Eighth Edition; BWH, Brigham and Women’s Hospital; NCCN, National Comprehensive Cancer 
Network. *One patient did not report ethnicity. **67 of 76 immune deficient patients were organ transplant recipients. 
***Tumor diameter reported (n=295). #Tumor thickness reported (n=115). ##PNI with nerve caliper ≥0.1mm or in 
nerve deeper than the dermis are upstaging factors for AJCC. Only nerve caliper ≥0.1mm is an upstaging factor for 
BWH. 1 of 7 cases met AJCC upstaging but not BWH upstaging.  ###Mohs or wide local excision (n=319) with 2 
cases not having additional surgery beyond biopsy. 
 573 
Table 2. Multivariate Cox regression analyses of risk for metastasis in 40-GEP validation cases 574 
(n=321) with binary AJCC and BWH T stage 575 

Multivariate Cox Regression 
n=321 (52 events) HR (95% CI) p value 
 40-GEP 

  
        Class 1 1.0 --- 
        Class 2A 2.15 (1.12-4.12) 0.021 
        Class 2B 9.55 (4.79-19.06) <0.0001 
 AJCC8   
        T1/T2 1.0 --- 
        T3/T4 2.68 (1.52-4.72) <0.001 

  40-GEP   
        Class 1 1.0 --- 
        Class 2A 2.27 (1.19-4.35) 0.013 
        Class 2B 8.72 (4.30-17.71) <0.0001 
 BWH 

  
        T1/T2a 1.0 --- 
        T2b/T3 2.03  (1.07-3.88) 0.032 
NOTE. An event was regional or distant metastasis. 
Abbreviations: HR, hazard ratio; CI, confidence interval; GEP, 
gene expression profile; AJCC8, American Joint Committee on 
Cancer, Cancer Staging Manual, Eighth Edition; BWH, Brigham 
and Women’s Hospital. 
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Table 3. Accuracy of risk prediction of the 40-GEP and risk assessment methods (n=321) 593 

Accuracy 
Metric 

40-GEP 
(Class 2B v 1/2A) 

40-GEP 
(Class 2 v 1) 

AJCC 8* 
(T3/T4 v T1/T2) 

BWH* 
(T2b/T3 v 
T1/T2a) 

NCCN* 
(High v low) 

Sensitivity 28.8% 65.4% 38.5% 25.0% 96.2% 

Specificity 96.3% 68.8% 84.8% 91.1% 7.1% 

+LR 7.78 2.10 2.53 2.81 1.04 

-LR 0.74 0.50 0.73 0.82 0.54 

PPV 60.0% 28.8% 32.8% 35.1% 16.7% 

NPV 87.5% 91.1% 87.7% 86.3% 90.5% 

Abbreviations: GEP, gene expression profile; AJCC8, American Joint Committee on Cancer, Cancer 
Staging Manual, Eighth Edition; BWH, Brigham and Women’s Hospital; NCCN, National Comprehensive 
Cancer Network; LR, likelihood ratio; PPV, positive predictive value; NPV, negative predictive value. 
*Missing histopathologic information was treated as negative. 
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