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Network analysis of psoriasis reveals
biological pathways and roles for coding
and long non-coding RNAs
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Abstract

Background: Psoriasis is an immune-mediated, inflammatory disorder of the skin characterized by chronic
inflammation and hyperproliferation of the epidermis. Differential expression analysis of microarray or RNA-seq data
have shown that thousands of coding and non-coding genes are differentially expressed between psoriatic and
healthy control skin. However, differential expression analysis may fail to detect perturbations in gene coexpression
networks. Sensitive detection of such networks may provide additional insight into important disease-associated
pathways. In this study, we applied weighted gene coexpression network analysis (WGCNA) on RNA-seq data from
psoriasis patients and healthy controls.

Results: RNA-seq was performed on skin samples from 18 psoriasis patients (pre-treatment and post-treatment with
the TNF-α inhibitor adalimumab) and 16 healthy controls, generating an average of 52.3 million 100-bp paired-end
reads per sample. Using WGCNA, we identified 3 network modules that were significantly correlated with psoriasis and
6 network modules significantly correlated with biologic treatment, with only 16 % of the psoriasis-associated and 5 %
of the treatment-associated coexpressed genes being identified by differential expression analysis. In a majority of
these correlated modules, more than 50 % of coexpressed genes were long non-coding RNAs (lncRNA). Enrichment
analysis of these correlated modules revealed that short-chain fatty acid metabolism and olfactory signaling are
amongst the top pathways enriched for in modules associated with psoriasis, while regulation of leukocyte mediated
cytotoxicity and regulation of cell killing are amongst the top pathways enriched for in modules associated with
biologic treatment. A putative autoantigen, LL37, was coexpressed in the module most correlated with psoriasis.

Conclusions: This study has identified several networks of coding and non-coding genes associated with psoriasis and
biologic drug treatment, including networks enriched for short-chain fatty acid metabolism and olfactory receptor
activity, pathways that were not previously identified through differential expression analysis and may be dysregulated
in psoriatic skin. As these networks are comprised mostly of non-coding genes, it is likely that non-coding genes play
critical roles in the regulation of pathways involved in the pathogenesis of psoriasis.
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Background
Psoriasis is an immune-mediated, inflammatory disorder
of the skin, is characterized by chronic inflammation
and subsequent hyper proliferation of the epidermis that
results in silvery scales and a thickening of the skin. In
the past decade, microarray-based differential expression
studies have shown that hundreds of genes that are dif-
ferentially expressed between psoriatic and healthy
control skin [1–4]. More recently, RNA-seq-based differ-
ential expression studies, including a study by Li et al.
[5], have dramatically increased the number of differen-
tially expressed genes (DEGs) found between psoriatic
and healthy skin, with the number of known DEGs in
the thousands.
However, while differential expression analyses have

successfully revealed transcriptomic signatures com-
prised of many individual DEGs, differential expression
analysis may fail to detect important biological pathways
or gene-gene interactions associated with disease due to
a focus on the effect of individual genes rather than on
the effect of networks of genes. Gene coexpression net-
work analysis methods were developed to understand
the relationship between pairs of genes and ultimately,
gene networks or modules that are associated with a
distinct biological function. Unweighted gene coexpres-
sion methods constructed these networks using pairwise
correlations [6], Bayesian graphical models [7], or linear
regression [8]. Weighted gene coexpression network
analysis (WGCNA) [9] builds upon these previous un-
weighted methods by implementing a correlation-based
soft-thresholding weight that prioritizes the strongest
pairwise correlations and penalizes weaker ones and
complements differential expression analysis by testing
for association between a disease and networks of corre-
lated genes. Unlike methods such as Gene Set Enrich-
ment Analysis [10], the WGCNA framework is based on
the rationale that gene networks can be constructed with
gene correlation matrices alone, without prior network
or pathway information that can introduce bias. Further-
more, WGCNA offers a way to prioritize the most im-
portant genes in a given network by calculating a
measure of connectivity for each gene which is based on
the number of correlations between each gene and all
other genes in the network. A WGCNA-based screen
reached a higher validation rate than a differential
expression analysis based approach in identifying a bio-
marker for glioblastoma [11]. WGCNA has also been
successfully applied in screening for disease-associated
pathways, molecular targets, and candidate genes in
chronic fatigue syndrome [12], Sjögren’s Syndrome [13],
coronary heart disease [14], and inflammatory bowel
disease [15].
Although WGCNA has been used to identify networks

of coding genes associated with psoriasis [5, 16], WGCNA

has not been used to identify networks of coding genes
and long non-coding RNAs (lncRNAs). Therefore, we
applied WGCNA to coding genes and lncRNAs se-
quenced by RNA-seq on lesional skin samples from psor-
iasis patients before (PP) and after treatment (PT) with a
TNF-α inhibitor, adalimumab, and on healthy control skin
(NN). Here we report the identification of novel networks
of coding genes and lncRNAs associated with psoriasis
and response to therapy and show that WGCNA uncovers
additional biological pathways compared to differential ex-
pression analysis alone.

Methods
RNA-seq and differential expression of coding genes and
lncRNAs in lesional psoriatic skin tissue
18 adult subjects with chronic plaque psoriasis were
recruited from the University of California San Francisco
(UCSF) Dermatology Department. A board certified
dermatologist confirmed the diagnosis of psoriasis. The
participants were required to have affected body surface
area > 10 % and to not already be on systemic medica-
tions for their psoriasis. Among the 18 subjects, 4 were
female, the mean age was 39.2 years (s.d. = 9.7 years),
and the mean body mass index was 28.9 (s.d. = 6.2). Five
millimeter punch biopsies were taken from the edge of a
psoriatic plaque of each patient. Two skin biopsies were
taken from each participant, the first prior to the initi-
ation of adalimumab and the second one month after
starting treatment. The mean Psoriasis Area and Severity
Index (PASI) score prior to treatment was 14.6 (s.d. = 3.6)
and after one month of adalimumab treatment was 7.0
(s.d. = 3.9), with a mean improvement of the PASI of
53.1 %. Sixteen normal skin samples were obtained from
healthy control surgical discard specimens.
We prepared cDNA libraries from ribosome-depleted

RNA extracted from skin biopsies of 18 psoriatic
patients and 16 healthy controls that were sequenced on
the Illumina HiSeq 2000 platform, which yielded an
average of 52.3 million 100-bp paired-end reads per
sample. Sequenced reads were aligned to the hg19/
GRCh37 human reference genome using TopHat2 [17].
Gene annotations for 23 K coding genes and 67 K
lncRNAs (including lincRNAs) were obtained from
RefSeq [18] and Hangauer et al.’s dataset S3 [19],
respectively. We used CuffDiff [20] to test for differential
expression.

Weighted gene coexpression network analysis
After expression values were normalized to the number
of reads per kilobase per million reads, QC was per-
formed on the matrix of normalized expression values to
remove any transcripts with either zero variance or a
missing value and remove samples that were outliers in
an initial unsupervised hierarchical clustering analysis
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(9303 genes, 3 control samples). After QC, a weighted
adjacency matrix was created, defined as, Aij = (|cor*(-
xi,xj)|

β, where xi and xj are the i-th and j-th genes, re-
spectively. The soft thresholding power parameter, β,
was set to 6 after a sensitivity analysis of scale-free top-
ology was performed. This weighted adjacency matrix
was used to generate a topological overlap matrix
(TOM) and dendrogram. A dynamic hybrid branch cut-
ting method was implemented on the resulting TOM-
based dendrogram to identify module eigengenes (ME).
MEs are the first principal components for each gene ex-
pression module after a singular value decomposition is
performed on the TOM. A cut height of 0.2 was set to
merge MEs that have a correlation of 0.8 or greater. A
phenotypic trait-based gene significance measure was
defined as GSi = −log10(p|cor*(xi,t)|), where xi is the i-th
gene and t is the binary indicator variable for psoriasis
case status (or treatment status). An ME significance
was defined as MESi = |cor*(MEj,t)|, where MEj is the j-th
ME. Module membership, MM, for the i-th gene was
defined as, MM = |cor*(xi,ME)|.

*Unless otherwise specified, ‘cor’ refers to Pearson
correlation.

Pathway analysis
We uploaded lists of DEGs and lists of genes from the
significantly correlated modules between NN and PP
and between PP and PT to the Illumina NextBio
Research platform for GO term enrichments and Broad
MSigDB Canonical Pathways enrichment. DAVID
(https://david.ncifcrf.gov) was used to find KEGG path-
way enrichments.

Results
Network analysis of coding genes and lncRNAs in healthy
and psoriatic skin
We analyzed RNA-seq data from 18 psoriatic patients
and 16 healthy controls previously described in Gupta et
al. [21]. Traditional differential expression analysis in
PPvNN revealed that 5328 genes were differentially
expressed (FDR ≤ 0.05), including 4357 coding genes and
971 lncRNAs (Additional file 1). In PPvPT, 2657 genes
were differentially expressed (FDR ≤ 0.05), including
2500 coding genes and 157 lncRNAs (Additional file 1).
A validation of the DE lncRNAs was performed by
implementing reverse transcriptase qPCR on lncRNAs

from 17 cases and 14 healthy controls. Four DE lncRNAs
(TRHDE-AS1, CYP4Z2P, HINT1, and RPSAP58) were
chosen for validation, with three of the four lncRNAs
(TRHDE-AS1, CYP4Z2P, and HINT1) being DE in the
same direction as found in the RNA-seq analysis. A
detailed description of differential expression analysis of
lncRNAs and validation of DE lncRNAs by qPCR is pro-
vided in Gupta et al. [21]. The top 3 GO terms from
PPvNN were viral reproductive process (p = 1.40e-98),
nuclear division (p = 1.30e-87), and mitosis (p = 1.30e-87),
all with significantly up-regulated genes. From PPvPT, the
top 3 GO terms were mitosis (p = 5.60e-100), nuclear
division (p = 5.60e-100), and viral reproductive
process (p = 6.80e-93), all with significantly down-
regulated genes. The full list of GO terms are in
Additional file 2.
To determine if a network analysis approach reveals

psoriasis-associated biological pathways that were not
previously found by differential expression analysis, we
started by asking which coding and non-coding genes
are uniquely identified by network analysis versus differ-
ential expression analysis. To answer this question, we
implemented WGCNA to identify module eigengenes
(MEs) that correlated with either psoriasis or with posi-
tive response to biologic treatment. MEs are the ideal
unit to correlate with external traits because they are the
first principal component of a network of coexpressed
genes and thus account for the most variance in the
data. We generated 64 MEs in PPvNN, 3 of which
were significantly correlated with psoriasis (7849
genes; FDR ≤ 0.05) (Table 1). In PPvPT, we generated
70 MEs, 6 of which were significantly correlated with
positive response to biologic treatment (5775 genes;
FDR ≤ 0.05) (Table 2).
Although there was some overlap between genes identi-

fied by DE and WGCNA, the WGCNA approach identi-
fied a large number of genes significantly correlated with
psoriasis and biologic treatment that were not identified
by differential expression analysis (Fig. 1). We found that
84 % and 95 % of genes identified by WGCNA as being
associated with psoriasis (PPvNN) or psoriasis treatment
(PPvPT), respectively, were not identified by DE analysis.
In PPvNN, 93 coding genes that were exclusively identi-
fied via DE were amongst the top 100 over-expressed
coding genes in PP while 22 coding genes identified via
DE only were amongst the top 100 under-expressed

Table 1 Top module eigengenes that are significantly correlated with psoriasis (FDR ≤ 0.05) between PP and NN

Module Trait Correlation FDRTrait Correlation # of genes # of lncRNA % lncRNA # DE RefSeq # DE lncRNAs

blue −0.86 2.42E-08 5719 2655 46 % 1031 236

salmon 0.81 1.39E-06 2002 1820 91 % 3 0

lavenderblush3 0.74 3.36E-05 128 113 88 % 0 0
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coding genes in PP. 87 lncRNAs identified via DE only
were amongst the top 100 over-expressed lncRNAs while
52 such lncRNAs were amongst the top 100 under-
expressed lncRNAs. The 93 over-expressed coding
genes were significantly enriched for GO terms such
as keratinization (p = 3.69e-20), keratinocyte differenti-
ation (p = 1.82e-15), and cytokine-mediated signaling

pathway (p = 1.18e-8), replicating results from previ-
ous studies.
For PPvPT, 73 coding genes identified via DE only were

amongst the top 100 over-expressed coding genes in PT,
while 99 coding genes were amongst the top 100 under-
expressed coding genes in PT. Of the 157 DE lncRNAs in
PPvPT, 150 were exclusively identified by DE analysis,
with 9 lncRNAs under-expressed and 141 lncRNAs over-
expressed in PP. Unsurprisingly, the 99 under-expressed
coding genes were significantly enriched for keratinization
(p = 4.43e-9), keratinocyte differentiation (p = 1.41e-7),
and inflammatory response (p = 2.82e-7), which coincides
with the efficacy of the treatment with adalimumab.
We next examined the two most significantly corre-

lated modules from both PPvNN and PPvPT. For
PPvNN, the module most significantly correlated with
psoriasis was the blue module (ρ = −0.86, p = 3.77e-10).
The negative correlation indicates that the genes in this
module were underexpressed in PP. The top 3 GO terms
that were significantly enriched for in the blue module
included “lipid biosynthetic process” (p = 2.50e-61), “fatty
acid metabolic process” (p = 4.10e-57), and “mitochon-
drial matrix” (p = 3.90e-53) (Table 3; Additional file 3).
With 5719 genes, the blue module was the largest sig-
nificant module and also had the greatest proportion of
differentially expressed genes (DEG). 54 % of the blue
module genes were coding genes and 34 % of these
genes were DEGs. Of the 46 % of blue module genes
that were lncRNAs, 9 % were DEGs. None of the top
blue module GO terms were amongst the top 20 GO
terms enriched for in the DE genes.
The next most significantly psoriasis-correlated module

was the salmon module (ρ = 0.81, p = 4.33e-8). The posi-
tive correlation indicates that the genes in this module
were overexpressed in PP. The top 3 GO terms that were
significantly enriched for are “immune effector process”
(p = 1.0e-4), “innate immune response” (p = 2.0e-4), and
“cell surface” (p = 2.0e-4) as well as the Broad
MSigDB canonical pathways, “olfactory transduction”
(p = 3.20e-16) and “genes involved in olfactory signal-
ing pathway” (p = 2.7e-12) (Table 3; Additional file 3).
In contrast to the blue module, 90 % of the 2002
genes in the salmon module were lncRNAs and of
the 182 coding genes, only 3 were DEGs, with none

Table 2 Top module eigengenes that are significantly correlated with psoriasis (FDR ≤ 0.05) between PP and PT

Module Trait Correlation FDRTrait Correlation # of genes # of lncRNA % lncRNA # DE RefSeq #DE lncRNA

sienna3 0.71 8.32E-05 564 470 83 % 1 0

lightyellow −0.66 4.28E-04 969 792 82 % 1 0

salmon −0.6 2.91E-03 1290 459 36 % 169 5

black 0.53 1.48E-02 2339 1813 78 % 27 1

coral1 −0.5 2.92E-02 130 123 95 % 0 0

mediumpurple3 −0.48 3.19E-02 483 168 35 % 98 1

a

b

6560
(2014/4546)

4039
(3304/735)

1289
(1053/236)

WGCNA DE

5471
(499/4972)

2353
(2203/150)

304
(297/7)

WGCNA DE

PPvNN

PPvPT

Fig. 1 WGCNA identifies genes associated with psoriasis a and
biologic treatment b not identified by DE. Venn diagram of genes
identified by WGCNA or DE that are associated with psoriasis in PPvNN
a or with biologic treatment in PPvPT b. Values in parantheses are the
count of coding genes to lncRNAs
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of the lncRNAs being DEGs. With the exception of
“innate immune response”, none of the top salmon
module GO terms were amongst the top 20 terms
enriched for in the DE genes.
For PPvPT, the module most correlated with treatment

response was the sienna3 module (ρ = 0.71, p = 1.18e-6).
The top 3 GO terms that were enriched for are “regula-
tion of leukocyte mediated cytotoxicity” (p = 1.40e-5),
“regulation of cell killing” (p = 1.90e-5), and “leukocyte
activation” (p = 1.0e-4) (Table 4; Additional file 4). A
majority of the 564 genes (83 %) in the sienna3 module
were lncRNAs. Almost none of the genes were differen-
tially expressed, with just one coding DEG.
The next most correlated module for treatment response

in PPvPT was the lightyellow module (ρ = 0.66, p = 1.22e-5).
GO terms that the lightyellow module was enriched for
included “protein complex disassembly” (p = 1.0e-10), “pro-
tein targeting to ER” (p = 1.1e-10), and “establishment of
protein localization to endoplasmic reticulum” (p = 1.1e-10)
(Table 4; Additional file 4). Again the majority of the genes
in this module were lncRNAs (82 %) and only one gene

(coding) was a DEG. Interestingly, while nearly all of the
overlapping DEGs from PPvNN (Fig. 1a) are found in the
blue module, most of the 304 overlapping genes (Fig. 1b)
from PPvPT are not found in the top three PPvPT modules.
None of the top GO terms enriched for in either of the
PPvPT sienna3 or lightyellow modules, were amongst the
top 20 GO terms enriched for in the DE genes.
Next, we performed intramodular analysis to deter-

mine “hub genes” or genes that were the most connected
to other genes and individually significant genes.
Figure 2a graphically illustrates the process from identi-
fication of the most significant MEs to intramodular
analysis. We defined a hub gene as a gene with gene sig-
nificance (GS) ≥ 10 and module membership (MM) ≥ 0.8.
We performed intramodular analysis on the top 3
modules in both PPvNN and PPvPT. Within the blue
module of PPvNN, we identified 33 hub genes (Fig. 2b;
Additional files 5), including HOXA9, HOXA10, and
GGH. 28 of the 33 hub genes were lncRNAs and all but
one of the hub genes (MARCH6) was differentially
expressed in PPvNN. Genes in the other modules (for

Table 3 Top 10 GO Term and Broad MSigDB Canonical Pathway enrichments for 2 most correlated modules in PPvNN

Module GO Term pGO Broad MSigDB Canonical Pathway pBroad

Blue lipid biosynthetic process 2.50E-61 Genes involved in Metabolism of lipids
and lipoproteins

6.10E-71

fatty acid metabolic process 4.10E-57 Peroxisome 5.30E-39

mitochondrial matrix 3.90E-53 Valine, leucine and isoleucine degradation 5.60E-35

mitochondrial membrane 3.00E-52 Genes involved in Generic Transcription Pathway 6.90E-34

mitochondrial inner membrane 2.20E-51 Genes involved in Fatty acid, triacylglycerol,
and ketone body metabolism

5.90E-32

organic acid catabolic process 1.70E-48 Genes involved in Cholesterol biosynthesis 2.90E-26

peroxisome 5.30E-42 Genes involved in The citric acid (TCA)
cycle and respiratory electron transport

6.40E-23

microbody 5.30E-42 Fatty acid metabolism 1.20E-20

cofactor binding 5.40E-40 Propanoate metabolism 2.40E-20

steroid metabolic process 3.00E-36 Genes involved in Phospholipid metabolism 2.60E-18

Salmon immune effector process 0.0001 Olfactory transduction 3.20E-16

innate immune response 0.0002 Genes involved in Olfactory Signaling Pathway 2.70E-12

cell surface 0.0002 Genes involved in Hyaluronan uptake and degradation 5.90E-05

lymphocyte mediated immunity 0.0002 Genes involved in Hyaluronan metabolism 0.0001

adaptive immune response based
on somatic recombination of
immune receptors built from
immunoglobulin superfamily
domains

0.0003 Genes involved in Glycosaminoglycan metabolism 0.0003

adaptive immune response 0.0004 Sulfur metabolism 0.0006

leukocyte mediated
immunity

0.0004 Genes involved in Chondroitin sulfate biosynthesis 0.0009

ion channel activity 0.0005 Glycosaminoglycan biosynthesis - chondroitin sulfate 0.001

positive regulation of immune response 0.0005 PAR1-mediated thrombin signaling events 0.001

response to bacterium 0.0006 Genes involved in Developmental Biology 0.0013
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both PPvNN and PPvPT) did not meet GS or MM
thresholds defined above (Additional files 6).

Discussion
Differential expression analysis can identify individual
genes that are differentially expressed between cases and
controls. In this study, we investigated whether
WGCNA would uncover biological pathways associated
with psoriasis and treatment with a biologic drug that
are not identified by differential expression analysis.
Our results show that most of the genes identified in
psoriasis or treatment-associated co-expression net-
works are not differentially expressed. We also in-
ferred the function of non-coding genes that were
coexpressed with coding genes in networks of genes
correlated with psoriasis or treatment response by
testing these coexpression networks for GO or KEGG
term enrichment.

Dominance of lncRNAs in network modules
We were surprised to discover that most of the genes in
the majority of the modules that were significantly

correlated with psoriasis were lncRNAs, particularly in
PPvNN, where 2 of the 3 significantly psoriasis-correlated
modules were at least 80 % lncRNA, with most of these
lncRNAs not being DE. This dominance of non-DE
lncRNAs in psoriasis-correlated modules may be due to
the overall low-abundance of lncRNAs and inability of
differential expression methods to detect minute (and
statistically insignificant) but biologically significant differ-
ences in lncRNA expression, with coding genes having
nearly ten times more abudance than lncRNAs on average
[22]. As coexpression network analysis is based on pairwise
correlations between genes and not on relative differences
in expression between biological states, coexpression
network analysis may be more robust to inclusion of low-
abundance transcripts compared to differential expression
analysis. This dominance of lncRNAs in psoriasis-
correlated modules suggests the possibility that lncRNAs
play a significant role in psoriasis pathogenesis through
regulation of coding genes in key pathways. Previous
studies of lncRNA indicate they can act by guiding chroma-
tin modifiers and histone modifiers to targeted loci to regu-
late transcription, function as ligands for proteins, and play

Table 4 Top 10 GO Term and Broad MSigDB Canonical Pathway enrichments for 2 most correlated modules in PPvPT

Module GO Term pGO Broad MSigDB Canonical Pathway pBroad

Sienna3 regulation of leukocyte mediated
cytotoxicity

1.40E-05 Genes involved in Lipid digestion, mobilization,
and transport

1.70E-05

regulation of cell killing 1.90E-05 Antigen processing and presentation 0.0002

leukocyte activation 0.0001 Genes involved in Neuronal System 0.0004

T cell activation 0.0001 Genes involved in Lipoprotein metabolism 0.0004

monosaccharide metabolic process 0.0001 Genes involved in Glucose metabolism 0.0004

positive regulation of immune response 0.0002 Visual signal transduction: Cones 0.0005

cytokine production 0.0003 Signaling events mediated by HDAC Class II 0.0008

cell surface 0.0005 ABC transporters 0.0011

MHC protein binding 0.0005 Downstream signaling in CD8+ T cells 0.0015

microtubule organizing center 0.0006 Genes involved in Transmission across
Chemical Synapses

0.0015

Lightyellow protein complex disassembly 1.00E-10 Ribosome, cytoplasmic 2.10E-11

protein targeting to ER 1.10E-10 Ribosome 3.50E-11

establishment of protein localization to
endoplasmic reticulum

1.10E-10 Genes involved in 3' -UTR-mediated translational
regulation

6.90E-11

viral infectious cycle 2.20E-10 Genes involved in Translation 3.70E-10

macromolecular complex disassembly 3.10E-10 Genes involved in Peptide chain elongation 7.30E-10

ribosomal subunit 4.50E-10 Genes involved in Influenza Viral RNA Transcription
and Replication

1.40E-09

cytosolic part 3.50E-09 Genes involved in Nonsense Mediated Decay
Enhanced by the Exon Junction Complex

1.70E-09

establishment of protein localization
to organelle

5.70E-09 Genes involved in SRP-dependent cotranslational
protein targeting to membrane

1.90E-09

cellular component disassembly at
cellular level

1.20E-08 Genes involved in Influenza Life Cycle 4.30E-09

cellular component disassembly 1.30E-08 Genes involved in Metabolism of proteins 5.30E-09
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crucial roles in cell differentiation that ultimately determine
cell fate [23].

Module enriched for metabolic activity
The blue module, the most correlated module in
PPvNN, was enriched for lipid metabolic pathways as
well as biosynthetic pathways. This finding is in line with
the results of Gudjonsson et al. [3, 24] that uncovered
DE genes also enriched for lipid metabolism along with
biosynthetic pathways. Several of the downregulated
genes enriching for these pathways in Gudjonsson et al.
[24] were also downregulated in our analysis and found
in the blue module, including PPARA, ELOVL3,
ACSBG1, and HSD3B1. Gudjonsson et al. [3] inferred
that this enrichment for lipid and fatty acid metabolic
pathways is associated with defects in the epidermal lipid
barrier of psoriatic skin. However, there is mounting evi-
dence that perturbations of lipid metabolic pathways
may also be associated with T cell fate and function [25],
particularly in Treg cells [26]. It has very recently been
shown that short-chain fatty acids promote differenti-
ation of naïve T cells into Treg cells [27, 28] and that
dysfunctional Treg cells residing in the skin are thought
to contribute to the pathogenesis of psoriasis [29].
Therefore, we found it very interesting that genes
involved in short-chain fatty acid metabolic pathways in-
cluding propionate metabolism and butyrate metabolism

were enriched in the blue module and that the majority
of these genes were significantly downregulated, which
could potentially lead to Treg dysfunction. As recent
studies of immune cell metabolism in other autoimmune
diseases such as rheumatoid arthritis and systemic lupus
erythematosus suggest that disease and T cell specific
metabolic profiles regulate pathogenic responses [25],
our data suggest that future T cell metabolism studies in
psoriasis are warranted.

Module enriched for olfactory receptor activity
One of our most surprising and intriguing findings was
the enrichment of negatively regulated olfactory receptor
genes in the PPvNN salmon module (second most corre-
lated module in PPvNN). Since the discovery that olfac-
tory receptors are expressed in non-nasal tissue, olfactory
receptor expression has been observed in skin tissue and
specifically in keratinocytes, dendritic cells, and melano-
cytes. Most recently, Busse et al.[30] discovered that
OR2AT4, an olfactory receptor gene, is expressed in kera-
tinocytes and that exposure to a synthetic odorant acti-
vated a calcium signal transduction pathway that induced
wound healing. Jabbari et al. [31] and Li et al. [5] revealed
that OR2T10, OR2T11, OR52B6, OR9Q1, OR10V1,
OR1L8, OR2A1, OR2A20P, OR2A42, and OR2A9P were
down-regulated while OR1J1 and ORMDL2 were up-
regulated. While OR2AT4 is not a DEG in our analysis or

Fig. 2 Intramodular analysis reveals hub genes in the top correlated module in PPvNN. Graphical illustration of intramodular analysis starting with
identification of the most correlated modules and plotting MM against GS for the top correlated modules a. After hub genes are identified, a
network plot of these genes is produced b. In this case, the network plot is of the hub genes of the PPvNN blue module. The relative size of
each hub indicates the degree of connectivity (number of edges) for each gene
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in previous studies [5, 31, 32] and is not a member of a
module significantly correlated with psoriasis in PPvNN
or PPvPT, we nonetheless observed that the salmon mod-
ule was significantly enriched for olfactory signaling and
transduction canonical pathways, a finding that bolsters
our previous analysis of this data using a complementary
coexpression analysis method [21]. Furthermore, Li et al.
[5] had also reported that a module detected via WGCNA
that was significantly correlated with psoriasis was signifi-
cantly enriched for “olfactory receptor activity”.

Hub genes in blue module
Within the blue module, we identified 33 hub genes or
genes with high GS (GS ≥ 10) and high connectivity
between genes (MM ≥ 0.8) (Fig. 2b) of which 32 were
DEGs, including 5 lncRNAs (Additional file 5). The gene
with the highest GS was HOXA10 while the gene with
the highest MM was GGH. HOXA10, is a homeobox
gene that encodes a DNA-binding transcription factor
that has been implicated in endometriosis [33], oncogen-
esis [34], and most recently in innate immune response
regulation [35]. In a study of B cell differentiation, Yasmeen
et al. [36] demonstrated that the knockout of an aldehyde
dehydrogenase-1 enzyme involved in retinol metabolism
and retinoic acid synthesis and encoded by the ALDH1
family of genes resulted in increased expression of HOXA10
by downregulating the expression of the anti-inflammatory
transcription factor peroxisome proliferator-activated re-
ceptor PPARG. ALDH1L1, another hub gene in the blue
module, is negatively coexpressed with HOXA10 and while
PPARG is not a hub gene in the blue module, it is signifi-
cantly downregulated in PPvNN. Hub gene CD200, is a
gene that encodes for a transmembrane glycoprotein and
has been shown to attenuate inflammatory response and
promote immune tolerance [37, 38] and is downregulated
in PPvNN. The gene encoding for fatty acid binding
protein, FABP5, is another hub gene was upregulated and
highly connected in the PPvNN blue module and has been
shown previously to interact with psoriasin (S100A7) [39]
and is highly expressed in psoriatic epidermal tissue [40].
The final hub gene of note was the transmembrane protein
encoding gene, TMEM57, which was upregulated and
highly connected in PPvNN and while it has not yet been
implicated in psoriasis pathogenesis directly, a TMEM57
variant was found to be assoicated with a biomarker for
inflammation in a Sardinian population [41].

Treatment with adalimumab normalizes perturbed
pathways
We found that for a number of GO term enrichments
and Broad MSigDB canonical pathways, dysregulated
pathways in psoriasis (either overexpressed or underex-
pressed in PPvNN) reverted towards the baseline after
adalimumab treatment in PPvPT (Additional file 2). For

instance, while the GO terms, “viral reproductive
process”, “nuclear division”, and “mitosis” are signifi-
cantly enriched for upregulated genes in PPvNN, these
same terms are significantly enriched for downregulated
genes in PPvPT. The top canonical pathways in PPvNN,
“olfactory transduction”, “genes involved in olfactory sig-
naling pathway”, and “genes involved in cell cycle”, also
reversed direction, suggesting that these return towards
a pre-psoriatic baseline with biologic treatment. To in-
vestigate the possibility that treatment with adalimumab
may have caused reversal of pathway direction beyond
the baseline in controls, we also examined the enrich-
ment for GO terms and canonical pathways in NN vs
PT. We found that for all of the pathways that reverted
towards the basline in PPvPT, none appear to “over-
shoot” the baseline.

Evaluation of putative psoriasis autoantigen
While it has long been thought that an autoantigen may
trigger T-cell activation and subsequent development of
psoriasis in susceptible individuals, characterization of
the responsible autoantigen has been elusive. Very re-
cently, Lande et al. [42] revealed that LL37/CAMP is
recognized as an autoantigen by T cells in nearly 50 % of
psoriasis patients and much more frequently in cases of
moderate-to-severe psoriasis. CAMP was marginally
downregulated in PPvNN (p = 0.01, q = 0.059) and was
coexpressed in the blue module in PPvNN. CAMP was
also significantly downregulated in PPvPT (p = 1.5e-3,
q = 1.4e-2) but was not coexpressed in any module.
Genes that were highly coexpressed with CAMP
within the blue module were enriched for metabolic
pathways such as fatty acid metabolic process and
lipid biosynthesis, pathways that were enriched for in
the blue module as a whole.

Conclusions
In summary, combining complementary systems biology
approaches such as WGCNA with DE analysis has
significant advantages over DE analysis alone. For in-
stance, while single gene DE analysis revealed the down-
regulation of lipid biosynthesis and fatty acid metabolism,
network analysis revealed specific short-chain fatty acid
metabolic pathways and how these genes may be interact-
ing with each other. We also found that olfactory receptor
signaling is significantly enriched for in one of the top
associated modules in PPvNN, an interesting observation
in light of recent discoveries highlighting the role of olfac-
tory receptors in signal transduction and wound healing
in the skin. We discovered that the majority of the top
significantly associated modules were composed of
lncRNAs, with 90 % of the top 10 PPvNN modules con-
sisting of at least 80 % lncRNAs and 70 % of the top 10
PPvPT modules consisting of at least 70 % lncRNAs. This
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suggests that lncRNAs likely play a significant role in the
regulation of critical pathways in the pathogenesis of psor-
iasis. Here for the first time we have also described the im-
pact of the TNF-α inhibitor, adalimumab, on these gene
networks, with dysregulated pathways reverting back to a
pre-psoriatic baseline.
We believe that future studies of populations of iso-

lated individual cell types (i.e. keratinocytes, T cell sub-
sets, dendritic cells, etc.) and single-cell approaches will
allow researchers to precisely match each gene network
to a particular cell type, shedding further light on which
cells are triggering psoriasis and which cells may be con-
ferring resistance to currently available therapies. This
matching of gene networks to cell type (and sub cell
type) may also aid in functional analyses of lncRNAs, a
vast majority of which have no known function. These
functional analyses will likely involve the use of siRNA
or the more recently developed CRISPRi technologies to
perturb genes of interest in each network.
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genes that were differentially expressed (FDR ≤ 0.05) in (1) PPvNN and (2)
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