22 research outputs found

    First measurement of the CP-violating phase in B0s→J/ψ( → e+e−)ϕ decays

    Get PDF
    A flavour-tagged time-dependent angular analysis of B0 s → J/ψφ decays is presented where the J/ψ meson is reconstructed through its decay to an e +e − pair. The analysis uses a sample of pp collision data recorded with the LHCb experiment at centre-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb−1 . The CP-violating phase and lifetime parameters of the B0 s system are measured to be φs = 0.00 ± 0.28 ± 0.05 rad, ∆Γs = 0.115 ± 0.045 ± 0.011 ps−1 and Γs = 0.608 ± 0.018 ± 0.011 ps−1 where the first uncertainty is statistical and the second systematic. This is the first time that CP-violating parameters are measured in the B0 s → J/ψφ decay with an e +e − pair in the final state. The results are consistent with previous measurements in other channels and with the Standard Model predictions

    Search for the doubly heavy Ξbc0 baryon via decays to D 0 pK −

    Get PDF
    A search for the doubly heavy Ξ0bc baryon using its decay to the D0pK- final state is performed using proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the LHCb experiment between 2016 and 2018, corresponding to an integrated luminosity of 5.4 fb−1. No significant signal is found in the invariant mass range from 6.7 to 7.2 GeV/c2. Upper limits are set at 95% credibility level on the ratio of the Ξ0bc production cross-section times its branching fraction to D0pK− relative to that of the Λ0b→D0pK− decay. The limits are set as a function of the Ξ0bc mass and lifetime hypotheses, in the rapidity range from 2.0 to 4.5 and in the transverse momentum region from 5 to 25 GeV/c. Upper limits range from 1.7 × 10−2 to 3.0 × 10−1 for the considered Ξ0bc mass and lifetime hypotheses

    Exploring Health Science Students’ Notions on Organ Donation and Transplantation: A Multicenter Study

    Get PDF
    The knowledge acquired during university education about organ donation and transplantation (ODT) decisively influences the information future health professionals transmit. This is important in ODT where the participation of the general public is essential to obtain organs. Objective: To determine notions of Spanish medicine and nursing students on ODT and its relationship with attitude toward ODT. Methods and Design: and design. We conducted a sociologic, multicenter, and observational study. The population for our study consisted of medical and nursing students in Spanish universities. Our database was the Collaborative International Donor Project, stratified by geographic area and academic course. A validated questionnaire (PCID-DTO-RIOS) was self-administered and completed anonymously. Our sample consisted of 9598 medical and 10, 566 nursing students (99% confidence interval; precision of ±1%), stratified by geographic area and year of study. Results: The completion rate for our study was 90%. Only 20% (n=3640) of students thought their notions on ODT were good; 41% (n=7531) thought their notions were normal; 36% (n=6550) thought their notions were scarce. Comparing groups, there were differences between those who believed that their notions on ODT were good (44% nursing vs 56% medical students; P < .000), and those who believed it scarce (54% nursing vs 46% medical students; P < .000). Notions on ODT were related with attitude toward the donation of one''s own organs: those who considered their notions were good were more in favor then those who considered it scarce (88% vs 72%; P < .000). Conclusion: Only 20% of Spanish medical and nursing students thought their notions on ODT were good. Having good knowledge is related to a favorable attitude towards ODT. Receiving specific information on the subject could improve their knowledge about ODT during their training

    Measurement of the CKM angle γγ in B±DK±B^\pm\to D K^\pm and B±Dπ±B^\pm \to D π^\pm decays with DKS0h+hD \to K_\mathrm S^0 h^+ h^-

    Get PDF
    A measurement of CPCP-violating observables is performed using the decays B±DK±B^\pm\to D K^\pm and B±Dπ±B^\pm\to D \pi^\pm, where the DD meson is reconstructed in one of the self-conjugate three-body final states KSπ+πK_{\mathrm S}\pi^+\pi^- and KSK+KK_{\mathrm S}K^+K^- (commonly denoted KSh+hK_{\mathrm S} h^+h^-). The decays are analysed in bins of the DD-decay phase space, leading to a measurement that is independent of the modelling of the DD-decay amplitude. The observables are interpreted in terms of the CKM angle γ\gamma. Using a data sample corresponding to an integrated luminosity of 9fb19\,\text{fb}^{-1} collected in proton-proton collisions at centre-of-mass energies of 77, 88, and 13TeV13\,\text{TeV} with the LHCb experiment, γ\gamma is measured to be (68.75.1+5.2)\left(68.7^{+5.2}_{-5.1}\right)^\circ. The hadronic parameters rBDKr_B^{DK}, rBDπr_B^{D\pi}, δBDK\delta_B^{DK}, and δBDπ\delta_B^{D\pi}, which are the ratios and strong-phase differences of the suppressed and favoured B±B^\pm decays, are also reported

    Legal aspects of contraceptive implants

    Get PDF
    Key message points - There has been litigation in relation to the three types of harm associated with contraceptive implants: non-insertion, deep insertion and nerve injury. - Recommendations for safe clinical practice can be derived from analysis of legal cases and published case reports. - Nerve injury has invariably been caused by clinicians without upper limb surgical skills attempting difficult removals. - The launch of the updated single-rod implant (Nexplanon®) may hold the best possibility for harm reduction. - Litigation in relation to side effects can lead to the withdrawal of safe and effective contraceptive products, so reducing choice for wome

    Measurement of the branching fraction of the B0Ds+π{{B} ^0} {\rightarrow }{{D} ^+_{s}} {{\pi } ^-} decay

    No full text
    International audienceA branching fraction measurement of the B0Ds+π{{B} ^0} {\rightarrow }{{D} ^+_{s}} {{\pi } ^-} decay is presented using proton–proton collision data collected with the LHCb experiment, corresponding to an integrated luminosity of 5.0fb15.0\,\text {fb} ^{-1} . The branching fraction is found to be B(B0Ds+π)=(19.4±1.8±1.3±1.2)×106{\mathcal {B}} ({{B} ^0} {\rightarrow }{{D} ^+_{s}} {{\pi } ^-} ) =(19.4 \pm 1.8\pm 1.3 \pm 1.2)\times 10^{-6}, where the first uncertainty is statistical, the second systematic and the third is due to the uncertainty on the B0Dπ+{{B} ^0} {\rightarrow }{{D} ^-} {{\pi } ^+} , Ds+K+Kπ+{{D} ^+_{s}} {\rightarrow }{{K} ^+} {{K} ^-} {{\pi } ^+} and DK+ππ{{D} ^-} {\rightarrow }{{K} ^+} {{\pi } ^-} {{\pi } ^-} branching fractions. This is the most precise single measurement of this quantity to date. As this decay proceeds through a single amplitude involving a bub{\rightarrow }u charged-current transition, the result provides information on non-factorisable strong interaction effects and the magnitude of the Cabibbo–Kobayashi–Maskawa matrix element VubV_{ub}. Additionally, the collision energy dependence of the hadronisation-fraction ratio fs/fdf_s/f_d is measured through Bs0Ds+π{{\overline{B}} {}^0_{s}} {\rightarrow }{{D} ^+_{s}} {{\pi } ^-} and B0Dπ+{{B} ^0} {\rightarrow }{{D} ^-} {{\pi } ^+} decays
    corecore