514 research outputs found

    From C/Mrkos to P/Halley: 30 years of cometary spectroscopy

    Get PDF
    An Atlas of Cometary Spectra was compiled, as a sequel to the well-known Atlas published by Swings and Haser in 1956. The new atlas comprises some 400 reproductions of cometary spectra secured in the world's largest observatories during the three decades or so from the passage of comet Mrkos 1957 V, for which the very first high-dispersion spectrum was obtained, to the return of Halley's comet. The illustrations refer to 40 different comet apparitions; they are grouped into a set of 186 loose 11 x 14 in. plates, while the texts, comments, and relevant data are given in a separate booklet. The main purpose of this atlas is to show in detail the tremendous progress which was achieved in cometary spectroscopy during the period covered, essentially thanks to the use of high-resolution coude spectrographs and large telescopes, the considerable extension of the observed wavelength range, and the advent of electronic detectors. It is divided into two parts. Part 1, which contains about two-thirds of the selected material, presents photographic spectra, while electronically recorded spectra covering the vacuum ultraviolet, through the optical, infrared, and radio regions appear in Part 2

    The CN Isotopic Ratios In Comets

    Get PDF
    Our aim is to determine the isotopic ratios (12)C/(13)C and (14)N/(15)N in a variety of comets and link these measurements to the formation and evolution of the solar system. The (12)C/(13)C and (14)N/(15)N isotopic ratios are measured for the CN radical by means of high-resolution optical spectra of the R branch of the B-X (0, 0) violet band. 23 comets from different dynamical classes have been observed, sometimes at various heliocentric and nucleocentric distances, in order to estimate possible variations of the isotopic ratios in parent molecules. The (12)C/(13)C and (14)N/(15)N isotopic ratios in CN are remarkably constant (average values of, respectively, 91.0 +/- 3.6 and 147.8 +/- 5.7) within our measurement errors, for all comets whatever their origin or heliocentric distance. While the carbon isotopic ratio does agree with the terrestrial value (89), the nitrogen ratio is a factor of two lower than the terrestrial value (272), indicating a fractionation in the early solar system, or in the protosolar nebula, common to all the comets of our sample. This points towards a common origin of the comets independently of their birthplaces, and a relationship between HCN and CN.NSFAstronom

    The 16OH/18OH and OD/OH isotope ratios in comet C/2002 T7 (LINEAR)

    Full text link
    The 16OH/18OH and OD/OH isotope ratios are measured in the Oort-Cloud comet C/2002 T7 (LINEAR) through ground-based observations of the OH ultraviolet bands at 3063 A (0,0) and 3121 A (1,1) secured with the Very Large Telescope (VLT) feeding the Ultraviolet-Visual Echelle Spectrograph (UVES). From the 16OH/18OH ratio, we find 16O/18O = 425 +/- 55, equal within the uncertainties to the terrestrial value and to the ratio measured in other comets, although marginally smaller. We also estimate OD/OH from which we derive D/H = 2.5 +/- 0.7 10-4 in water. This value is compatible with the water D/H ratios evaluated in other comets and marginally higher than the terrestrial value.Comment: Accepted for publication in A&A Letter

    Chemical Compositions of Four Metal-poor Giants

    Full text link
    We present the chemical compositions of four K giants CS 22877-1, CS 22166-16, CS22169-35 and BS 16085 - 0050 that have [Fe/H] in the range -2.4 to -3.1. Metal-poor stars with [Fe/H] < -2.5 are known to exhibit considerable star - to - star variations of many elements. This quartet confirms this conclusion. CS 22877-1 and CS 22166-16 are carbon-rich. There is significant spread for [α\alpha/Fe] within our sample where [α\alpha/Fe] is computed from the mean of the [Mg/Fe], and [Ca/Fe] ratios. BS 16085 - 0050 is remarkably α\alpha enriched with a mean [α\alpha/Fe] of ++0.7 but CS 22169-35 is α\alpha-poor. The aluminium abundance also shows a significant variation over the sample. A parallel and unsuccessful search among high-velocity late-type stars for metal-poor stars is described.Comment: 14 pages (text), 4 tables, 3 figures, Accepted for publication in PAS

    Rotation-stimulated structures in the CN and C3 comae of comet 103P/Hartley 2 around the EPOXI encounter

    Get PDF
    In late 2010 a Jupiter Family comet 103P/Hartley 2 was a subject of an intensive world-wide investigation. On UT October 20.7 the comet approached the Earth within only 0.12 AU, and on UT November 4.6 it was visited by NASA's EPOXI spacecraft. We joined this international effort and organized an observing campaign. The images of the comet were obtained through narrowband filters using the 2-m telescope of the Rozhen National Astronomical Observatory. They were taken during 4 nights around the moment of the EPOXI encounter. Image processing methods and periodicity analysis techniques were used to reveal transient coma structures and investigate their repeatability and kinematics. We observe shells, arc-, jet- and spiral-like patterns, very similar for the CN and C3 comae. The CN features expanded outwards with the sky-plane projected velocities between 0.1 to 0.3 km/s. A corkscrew structure, observed on November 6, evolved with a much higher velocity of 0.66 km/s. Photometry of the inner coma of CN shows variability with a period of 18.32+/-0.30 h (valid for the middle moment of our run, UT 2010 Nov. 5.0835), which we attribute to the nucleus rotation. This result is fully consistent with independent determinations around the same time by other teams. The pattern of repeatability is, however, not perfect, which is understendable given the suggested excitation of the rotation state, and the variability detected in CN correlates well with the cyclic changes in HCN, but only in the active phases. The revealed coma structures, along with the snapshot of the nucleus orientation obtained by EPOXI, let us estimate the spin axis orientation. We obtained RA=122 deg, Dec=+16 deg (epoch J2000.0), neglecting at this point the rotational excitation.Comment: 9 pages, 10 figures, submitted to Astron. Astrophy

    X-shooter observations of main sequence stars in the globular cluster NGC 2808: first chemical tagging of a He-normal and a He-rich dwarf

    Get PDF
    We present the first chemical composition study of two unevolved stars in the globular cluster NGC 2808, obtained with the spectrograph X-shooter@VLT. NGC 2808 shows three discrete, well separated main sequences. The most accepted explanation for this phenomenon is that their stars have different helium contents. We observed one star on the bluest main sequence, (bMS, claimed to have high helium content, Y~0.4), and one on the reddest main sequence (rMS, consistent with a canonical helium content, Y=0.245). We analyzed features of NH, CH, Na, Mg, Al, and Fe. While Fe, Ca, and other elements have the same abundances in the two stars, the bMS star shows a huge enhancement of N, a depletion of C, an enhancement of Na and Al, and small depletion of Mg with respect to the rMS star. This is exactly what is expected if stars on the bMS formed from the ejecta produced by an earlier stellar generation in the complete CNO and MgAl cycles whose main product is helium. The elemental abundance pattern differences in these two stars are consistent with the differences in helium content suggested by the color-magnitude diagram positions of the stars.Comment: Accepted for publication on ApJ Letters, uses emulateap

    Extremely Metal-Poor Stars. VII. The Most Metal-Poor Dwarf, CS 22876-032

    Full text link
    We report high-resolution, high-signal-to-noise, observations of the extremely metal-poor double-lined spectroscopic binary CS 22876-032. The system has a long period : P = 424.7 ±\pm 0.6 days. It comprises two main sequence stars having effective temperatures 6300 K and 5600 K, with a ratio of secondary to primary mass of 0.89 ±\pm 0.04. The metallicity of the system is [Fe/H] = -3.71 ±\pm 0.11 ±\pm 0.12 (random and systematic errors) -- somewhat higher than previous estimates. We find [Mg/Fe] = 0.50, typical of values of less extreme halo material. [Si/Fe], [Ca/Fe], and [Ti/Fe], however, all have significantly lower values, ~ 0.0-0.1, suggesting that the heavier elements might have been underproduced relative to Mg in the material from which this object formed. In the context of the hypothesis that the abundance patterns of extremely metal-poor stars are driven by individual enrichment events and the models of Woosley and Weaver (1995), the data for CS 22876-032 are consistent with its having been enriched by a zero-metallicity supernova of mass 30 M_{\odot}. As the most metal-poor near-main-sequence-turnoff star currently known, the primary of the system has the potential to strongly constrain the primordial lithium abundance. We find A(Li) (= log(N(Li)/N(H)) + 12.00) = 2.03 ±\pm 0.07, which is consistent with the finding of Ryan et al. (1999) that for stars of extremely low metallicity A(Li) is a function of [Fe/H].Comment: 27 pages, 9 figures, accepted for publication in The Astrophysical Journal, Sept. 1, 2000 issu

    Large excess of heavy nitrogen in both hydrogen cyanide and cyanogen from comet 17P/Holmes

    Get PDF
    From millimeter and optical observations of the Jupiter-family comet 17P/Holmes performed soon after its huge outburst of October 24, 2007, we derive 14 N/15N = 139 +/- 26 in HCN, and 14N/15N = 165 +/- 40 in CN, establishing that HCN has the same non-terrestrial isotopic composition as CN. The same conclusion is obtained for the long-period comet C/1995 O1 (Hale-Bopp) after a reanalysis of previously published measurements. These results are compatible with HCN being the prime parent of CN in cometary atmospheres. The 15N excess relative to the Earth atmospheric value indicates that N-bearing volatiles in the solar nebula underwent important N isotopic fractionation at some stage of Solar System formation. HCN molecules never isotopically equilibrated with the main nitrogen reservoir in the solar nebula before being incorporated in Oort-cloud and Kuiper-belt comets. The 12C/13C ratios in HCN and CN are measured to be consistent with the terrestrial value.Comment: Accepted for publication in the Astrophysical Journal (Letters) 4 page

    The Chemical Compositions of Non-Variable Red and Blue Field Horizontal Branch Stars

    Full text link
    We present a new detailed abundance study of field red horizontal branch (RHB) and blue horizontal branch (BHB) non-variable stars. High resolution and high S/N echelle spectra of 11 RHB and 12 BHB were obtained with the McDonald 2.7 m telescope, and the RHB sample was augmented by reanalysis of spectra of 25 stars from a recent survey. We derived stellar atmospheric parameters based on spectroscopic constraints, and computed relative abundance ratios for 24 species of 19 elements. The species include Si II and Ca II, which have not been previously studied in RHB and BHB (Teff < 9000 K) stars. The abundance ratios are generally consistent with those of similar-metallicity field stars in different evolutionary stages. We estimated the masses of the RHB and BHB stars by comparing their Teff--log g positions with HB model evolutionary tracks. The mass distribution suggests that our program stars possess masses of ~0.5 Msun. Finally, we compared the temperature distributions of field RHB and BHB stars with field RR Lyraes in the metallicity range -0.8 >~ [Fe/H] >~ -2.5. This yielded effective temperatures estimates of 5900K and 7400 K for the red and blue edges of the RR Lyrae instability strip.Comment: Accepted to A

    Interpretation of comet spectra

    Get PDF
    The spectra of comets are discussed by considering successively a number of molecules that have been studied recently: CN, CH, C2, C3, OH, CH(+). The first two of this list, CN and CH, have been analyzed in greatest detail. A classification of the spectra of cometary heads is introduced
    corecore