85 research outputs found

    The measurement of the noise-equivalent spectral radiance of SIMBIO-SYS/VIHI spectrometer

    Get PDF
    We report about the measurement of the Noise- Equivalent Spectral Radiance (NESR) of the VIHI imaging spectromter aboard ESA's Bepi Colombo mission to Mercury. The knowledge of the NESR allows to determine the capability of an optical detector to measure faint signals. A description of the setup used to determine the NESR during the prelaunch calibration campaign is given. The processing of the data col- lected at various operative temperatures and integration times is described. The sensitivity study of the NESR has been performed at the expected detector's temperatures and integration times with the goal to determine the minimum spectral radiance at which VIHI is sensitive during the different observation phases of the mission. A simulation of the expected Signal-to-Noise Ratio (SNR) of VIHI during the different orbital phases is provided

    Radiometric calibration of the SIMBIO-SYS STereo imaging Channel

    Get PDF
    The STereo imaging Channel (STC) is a double wide-angle camera developed to be one of the channels of the SIMBIOSYS instrument onboard of the ESA BepiColombo mission to Mercury. STC main goal is to map in 3D the whole Mercury surface. The geometric and radiometric responses of the STC Proto Flight model have been characterized on-ground during the calibration campaign. The derived responses will be used to calibrate the STC images that will be acquired in flight. The aim is to determine the functions linking the detected signal in digital number to the radiance of the target surface in physical units. The result of the radiometric calibration consists in the determination of well-defined quantities: (1) the dark current as a function of the integration time and of the detector temperature, settled and controlled to be stable at 268 K; (2) the read out noise, which is associated with the noise signal of the read-out electronic; and (3) the fixed pattern noise, which is generated by the different response of each pixel. Once these quantities are known, the photon response and the photoresponse non-uniformity, which represents the variation of the photon responsivity of a pixel in an array, can be derived. The final result of the radiometric calibration is the relation between the radiance of an accurately known and uniform source, and the digital numbers measured by the detector

    Children’s rights and digital technologies

    Get PDF
    Digital technologies have reshaped children’s lives, resulting in new opportunities for and risks to their well-being and rights. This chapter investigates the impact of digital technologies on children’s rights through the lens of the United Nations Convention on the Rights of the Child. Up until now, not all rights have received the same level of attention in the digital context. Legal and policy discourse in the area of children and digital media predominantly focuses on ‘protection’ rights, albeit with a growing awareness of the tension between ‘protection’ and ‘participation’ rights. ‘Provision’ rights are not often emphasised, other than in the important domain of education. However, all children’s rights should be supported, valued and developed in both online and offline spheres of engagement. Governments, parents, educators, industry, civil society and children’s rights commissioners or ombudspersons should all take up their responsibility to enhance children’s rights in relation to digital technologies, while actively listening and taking account of children’s views when developing laws, policies, programmes and other measures in this field

    SIMBIO-SYS : Scientific Cameras and Spectrometer for the BepiColombo Mission

    Get PDF
    The SIMBIO-SYS (Spectrometer and Imaging for MPO BepiColombo Integrated Observatory SYStem) is a complex instrument suite part of the scientific payload of the Mercury Planetary Orbiter for the BepiColombo mission, the last of the cornerstone missions of the European Space Agency (ESA) Horizon + science program. The SIMBIO-SYS instrument will provide all the science imaging capability of the BepiColombo MPO spacecraft. It consists of three channels: the STereo imaging Channel (STC), with a broad spectral band in the 400-950 nm range and medium spatial resolution (at best 58 m/px), that will provide Digital Terrain Model of the entire surface of the planet with an accuracy better than 80 m; the High Resolution Imaging Channel (HRIC), with broad spectral bands in the 400-900 nm range and high spatial resolution (at best 6 m/px), that will provide high-resolution images of about 20% of the surface, and the Visible and near-Infrared Hyperspectral Imaging channel (VIHI), with high spectral resolution (6 nm at finest) in the 400-2000 nm range and spatial resolution reaching 120 m/px, it will provide global coverage at 480 m/px with the spectral information, assuming the first orbit around Mercury with periherm at 480 km from the surface. SIMBIO-SYS will provide high-resolution images, the Digital Terrain Model of the entire surface, and the surface composition using a wide spectral range, as for instance detecting sulphides or material derived by sulphur and carbon oxidation, at resolutions and coverage higher than the MESSENGER mission with a full co-alignment of the three channels. All the data that will be acquired will allow to cover a wide range of scientific objectives, from the surface processes and cartography up to the internal structure, contributing to the libration experiment, and the surface-exosphere interaction. The global 3D and spectral mapping will allow to study the morphology and the composition of any surface feature. In this work, we describe the on-ground calibrations and the results obtained, providing an important overview of the instrument performances. The calibrations have been performed at channel and at system levels, utilizing specific setup in most of the cases realized for SIMBIO-SYS. In the case of the stereo camera (STC), it has been necessary to have a validation of the new stereo concept adopted, based on the push-frame. This work describes also the results of the Near-Earth Commissioning Phase performed few weeks after the Launch (20 October 2018). According to the calibration results and the first commissioning the three channels are working very well.Peer reviewe

    Infezione da virus dell'epatite C (HCV) e trapianto renale = Hepatitis C virus and renal transplantation

    No full text
    Liver disease has emerged as an important cause of morbidity and mortality after renal transplantation (RT). Hepatitis C virus (HCV) is the leading cause of liver disease after RT. The impact of HCV infection on patient and graft survival is currently a major concern. Retrospective studies with appropriate follow-up have mainly demonstrated that HCV positive patients have greater mortality compared to HCV negative recipients after RT. Novel investigations by large databases (United States Renal Data Systems (USRDS)) have shown that recipients of donor HCV-positive kidneys are at an independently increased risk of mortality, adjusted hazard ratio 2.12 (95% confidence interval (95% CI), 1.72-2.87, p<0.001); there was no evidence that any subgroup was less affected. With appropriate informed consent, the use of a renal graft from an HCV positive donor could be offered to an HCV infected recipient. Many renal transplant candidates have satisfactory virological responses to antiviral therapy; the persistence of HCV clearance over a prolonged follow-up after RT has been recently noted. Further prospective studies are needed to define better the course of HCV infection among renal allograft recipients
    • 

    corecore