502 research outputs found

    Effective Scalar Field Theory for the Electroweak Phase Transition

    Full text link
    We investigate an effective model for the finite temperature restoration phase transition of the electroweak theory. It is obtained by dimensional reduction of the 3+13+1 dimensional full theory and by subsequent integration over all static gauge degrees of freedom. The resulting theory corresponds to a 33-dimensional O(4)O(4) ferromagnet containing cubic and quartic terms of the field in its potential function. Possible nonperturbative effects of a magnetic screening mass are parametrically included in the potential. We analyse the theory using mean field and numerical Monte Carlo (MC) simulation methods. At the value of the physical Higgs mass, mH=37 GeVm_H=37~{\rm GeV}, considered in the present investigation, we find a discontinuous symmetry restoring phase transition. We determine the critical temperature, order parameter jump, interface tension and latent heat characteristics of the transition. The Monte Carlo results indicate a somewhat weaker first order phase transition as compared to the mean field treatment, demonstrating that non-perturbative fluctuations of the Higgs field are relevant. This effect is especially important for the interface tension. Any observation of hard first order transition could result only from non-perturbative effects related to the gauge degrees of freedom.Comment: 28 pages and 18 figure

    Interface Tension of the Electroweak Phase Transition

    Full text link
    In our nonperturbative lattice investigation we study the interface tension of the finite-temperature electroweak phase transition. In this analysis the Higgs mass has been chosen to be about 3535 GeV. At the transition point of a finite volume system, tunnelling between the symmetric and the Higgs phase takes place. This phenomenon leads to a splitting of the ground state, which can be used to determine the interface tension. The result obtained this way agrees with the result of the two-coupling method and with the prediction of the perturbative approach.Comment: 10 pages, five figures in uuencoded PS format, Latex + epsf.st

    Transition temperature of a dilute homogeneous imperfect Bose gas

    Full text link
    The leading-order effect of interactions on a homogeneous Bose gas is theoretically predicted to shift the critical temperature by an amount \Delta\Tc = # a_{scatt} n^{1/3} T_0 from the ideal gas result T_0, where a_{scatt} is the scattering length and n is the density. There have been several different theoretical estimates for the numerical coefficient #. We claim to settle the issue by measuring the numerical coefficient in a lattice simulation of O(2) phi^4 field theory in three dimensions---an effective theory which, as observed previously in the literature, can be systematically matched to the dilute Bose gas problem to reproduce non-universal quantities such as the critical temperature. We find # = 1.32 +- 0.02.Comment: 4 pages, submitted to Phys. Rev. Lett; minor changes due to improvement of analysis in the longer companion pape

    Finite T Electroweak Phase Transition on the Lattice

    Get PDF
    This talk reviews recent lattice results on the high TT electroweak phase transition. A remarkably accurate picture emerges: a) the transition is of first order for m_H \lsim 80GeV and vanishes for larger mHm_H; b) transition temperature, latent heat and interface tension are known, as well as c) the properties of the broken and symmetric phases. New developments in the sphaleron rate calculations are discussed.Comment: Talk presented at LATTICE96(electroweak), 13 pages latex, 11 eps-figure

    Establishing Telepathology in Africa: Lessons From Botswana

    Get PDF
    Few reports of telepathology in Africa exist in the medical literature. With the strong need for improvement in health care infrastructure and personnel training in many African nations, telepathology provides a rapid and versatile tool to improve clinical care and foster educational and research opportunities. We describe the challenges faced in establishing robotic telepathology (RT) services at a government referral center in Botswana and reflect on conditions under which such initiatives may be most likely to succeed in sub-Saharan Africa and other parts of the developing world

    Generation of human induced pluripotent stem cells using non-synthetic mRNA

    Get PDF
    Here we describe some of the crucial steps to generate induced pluripotent stemcells (iPSCs) usingmRNA transfection. Our approach uses a V. virus-derived capping enzyme instead of a cap-analog, ensuring 100% proper cap orientation for in vitro transcribedmRNA. V. virus\'' 2′-O-Methyltransferase enzymecreates a cap1 structure found in higher eukaryotes and has higher translation efficiency compared to other methods. Use of the polymeric transfection reagent polyethylenimine proved superior to other transfection methods. The mRNA created via this method did not trigger an intracellular immune response via human IFN-gamma (hIFN-γ) or alpha (hIFN-α) release, thus circumventing the use of suppressors. Resulting mRNA and protein were expressed at high levels for over 48 h, thus obviating daily transfections. Using this method, we demonstrated swift activation of pluripotency associated genes in human fibroblasts. Low oxygen conditions further facilitated colony formation. Differentiation into different germ layers was confirmed via teratoma assay. Reprogramming with non-synthetic mRNA holds great promise for safe generation of iPSCs of human origin. Using the protocols described herein we hope to make this method more accessible to other groups as a fast, inexpensive, and non-viral reprogramming approach

    Electroweak Bubble Nucleation, Nonperturbatively

    Get PDF
    We present a lattice method to compute bubble nucleation rates at radiatively induced first order phase transitions, in high temperature, weakly coupled field theories, nonperturbatively. A generalization of Langer's approach, it makes no recourse to saddle point expansions and includes completely the dynamical prefactor. We test the technique by applying it to the electroweak phase transition in the minimal standard model, at an unphysically small Higgs mass which gives a reasonably strong phase transition (lambda/g^2 =0.036, which corresponds to m(Higgs)/m(W) = 0.54 at tree level but does not correspond to a positive physical Higgs mass when radiative effects of the top quark are included), and compare the results to older perturbative and other estimates. While two loop perturbation theory slightly under-estimates the strength of the transition measured by the latent heat, it over-estimates the amount of supercooling by a factor of 2.Comment: 48 pages, including 16 figures. Minor revisions and typo fixes, nothing substantial, conclusions essentially unchange
    corecore