20 research outputs found

    Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers

    Get PDF
    In a companion paper by Cohen-Adad et al. we introduce the spine generic quantitative MRI protocol that provides valuable metrics for assessing spinal cord macrostructural and microstructural integrity. This protocol was used to acquire a single subject dataset across 19 centers and a multi-subject dataset across 42 centers (for a total of 260 participants), spanning the three main MRI manufacturers: GE, Philips and Siemens. Both datasets are publicly available via git-annex. Data were analysed using the Spinal Cord Toolbox to produce normative values as well as inter/intra-site and inter/intra-manufacturer statistics. Reproducibility for the spine generic protocol was high across sites and manufacturers, with an average inter-site coefficient of variation of less than 5% for all the metrics. Full documentation and results can be found at https://spine-generic.rtfd.io/. The datasets and analysis pipeline will help pave the way towards accessible and reproducible quantitative MRI in the spinal cord

    Transitional Care for Patients with Congenital Colorectal Diseases: An EUPSA Network Office, ERNICA, and eUROGEN Joint Venture

    Get PDF
    Background: Transition of care (TOC; from childhood into adulthood) of patients with anorectal malformations (ARM) and Hirschsprung disease (HD) ensures continuation of care for these patients. The aim of this international study was to assess the current status of TOC and adult care (AC) programs for patients with ARM and HD. Methods: A survey was developed by members of EUPSA, ERN eUROGEN, and ERNICA, including patient representatives (ePAGs), comprising of four domains: general information, general questions about transition to adulthood, and disease-specific questions regarding TOC and AC programs. Recruitment of centres was done by the ERNs and EUPSA, using mailing lists and social media accounts. Only descriptive statistics were reported. Results: In total, 82 centres from 21 different countries entered the survey. Approximately half of them were ERN network members. Seventy-two centres (87.8%) had a self-reported area of expertise for both ARM and HD. Specific TOC programs were installed in 44% of the centres and AC programs in 31% of these centres. When comparing centres, wide variation was observed in the content of the programs. Conclusion: Despite the awareness of the importance of TOC and AC programs, these programs were installed in less than 50% of the participating centres. Various transition and AC programs were applied, with considerable heterogeneity in implementation, content and responsible caregivers involved. Sharing best practice examples and taking into account local and National Health Care Programs might lead to a better continuation of care in the future. Level of Evidence: III

    Generic acquisition protocol for quantitative MRI of the spinal cord

    Get PDF
    Quantitative spinal cord (SC) magnetic resonance imaging (MRI) presents many challenges, including a lack of standardized imaging protocols. Here we present a prospectively harmonized quantitative MRI protocol, which we refer to as the spine generic protocol, for users of 3T MRI systems from the three main manufacturers: GE, Philips and Siemens. The protocol provides guidance for assessing SC macrostructural and microstructural integrity: T1-weighted and T2-weighted imaging for SC cross-sectional area computation, multi-echo gradient echo for gray matter cross-sectional area, and magnetization transfer and diffusion weighted imaging for assessing white matter microstructure. In a companion paper from the same authors, the spine generic protocol was used to acquire data across 42 centers in 260 healthy subjects. The key details of the spine generic protocol are also available in an open-access document that can be found at https://github.com/spine-generic/protocols. The protocol will serve as a starting point for researchers and clinicians implementing new SC imaging initiatives so that, in the future, inclusion of the SC in neuroimaging protocols will be more common. The protocol could be implemented by any trained MR technician or by a researcher/clinician familiar with MRI acquisition

    Updated Iberian archeomagnetic catalogue: new full vector paleosecular variation curve for the last three millennia

    Get PDF
    In this work, we present 16 directional and 27 intensity high‐quality values from Iberia. Moreover, we have updated the Iberian archeomagnetic catalogue published more than 10 years ago with a considerable increase in the database. This has led to a notable improvement of both temporal and spatial data distribution. A full vector paleosecular variation curve from 1000 BC to 1900 AD has been developed using high‐quality data within a radius of 900 km from Madrid. A hierarchical bootstrap method has been followed for the computation of the curves. The most remarkable feature of the new curves is a notable intensity maximum of about 80 μT around 600 BC, which has not been previously reported for the Iberian Peninsula. We have also analyzed the evolution of the paleofield in Europe for the last three thousand years and conclude that the high maximum intensity values observed around 600 BC in the Iberian Peninsula could respond to the same feature as the Levantine Iron Age Anomaly, after travelling westward through Europe

    Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers

    Get PDF
    In a companion paper by Cohen-Adad et al. we introduce the spine generic quantitative MRI protocol that provides valuable metrics for assessing spinal cord macrostructural and microstructural integrity. This protocol was used to acquire a single subject dataset across 19 centers and a multi-subject dataset across 42 centers (for a total of 260 participants), spanning the three main MRI manufacturers: GE, Philips and Siemens. Both datasets are publicly available via git-annex. Data were analysed using the Spinal Cord Toolbox to produce normative values as well as inter/intra-site and inter/intra-manufacturer statistics. Reproducibility for the spine generic protocol was high across sites and manufacturers, with an average inter-site coefficient of variation of less than 5% for all the metrics. Full documentation and results can be found at https://spine-generic.rtfd.io/. The datasets and analysis pipeline will help pave the way towards accessible and reproducible quantitative MRI in the spinal cord

    Generic acquisition protocol for quantitative MRI of the spinal cord

    Get PDF
    Quantitative spinal cord (SC) magnetic resonance imaging (MRI) presents many challenges, including a lack of standardized imaging protocols. Here we present a prospectively harmonized quantitative MRI protocol, which we refer to as the spine generic protocol, for users of 3T MRI systems from the three main manufacturers: GE, Philips and Siemens. The protocol provides guidance for assessing SC macrostructural and microstructural integrity: T1-weighted and T2-weighted imaging for SC cross-sectional area computation, multi-echo gradient echo for gray matter cross-sectional area, and magnetization transfer and diffusion weighted imaging for assessing white matter microstructure. In a companion paper from the same authors, the spine generic protocol was used to acquire data across 42 centers in 260 healthy subjects. The key details of the spine generic protocol are also available in an open-access document that can be found at https://github.com/spine-generic/protocols. The protocol will serve as a starting point for researchers and clinicians implementing new SC imaging initiatives so that, in the future, inclusion of the SC in neuroimaging protocols will be more common. The protocol could be implemented by any trained MR technician or by a researcher/clinician familiar with MRI acquisition

    Additive manufacturing of an Fe–Cr–Co permanent magnet alloy with a novel approach of in-situ alloying

    No full text
    Additive manufacturing has become increasingly important in the production of magnetic materials in recent years due to the great demands for miniaturization and complex-shaped magnet parts. In this study, the laser beam-powder bed fusion process (LPBF) has been used to develop an in-situ alloying process for the additive manufacturing of a permanent magnet material of the Fe–Cr–Co system. This novel method allows for the production of complex alloys with a chemical composition suited to each specific case of application, achieved by using elemental powders or simpler commercial alloy powders as base materials. The core focus of this study has been on the development and characterization of the printing process using a Fe-30.5Cr-15Co-1.5Mo alloy. The in-situ alloying process has been developed by performing melt pool tests on the two main component powders Fe and Cr and by conducting parameter studies using two different powder mixtures with different sphericity of their components. The influence of different printing parameters and post-printing treatments on the chemical homogeneity and magnetic properties has been studied for selected samples. In addition, magnetic measurements at different temperatures have been performed to investigate the temperature stability of the magnetic properties of the 3D printed material. Impact Statement As by today, the current amount of research done on the additive manufacturing of magnetic materials is rather low. Most of research is focused on rare- earth containing magnetic materials. In this work therefore, we are taking another direction in which we will show that LPBF combined with in- situ alloying is an ideal method for the production of a great variety of different rare- earth free magnetic materials. The positive results of our work can both have an influence on the the scientific community, as further research in the field on different promising rare- earth free magnetic materials is to be expected. Furthermore, a positiv economic impact may occur since the production of rare- earth free magnetic materials is dependent on different raw material sources which are both more cost- effectiv and less critical in terms of their supply chain. This effect is also accompanied by a positive environmental impact, since the mining of rare- earth metals usually comes with considerable environmental pollution

    Gravity effect of glacial ablation in the Eastern Alps – observation and modeling

    No full text
    Absolute gravity measurements have been regularly performed in the Austrian Eastern Alps since 1985. A gravity increase of 300 nm s<sup>−2</sup> has been observed so far. The gravity trend is explained by ablation effects within surrounding glaciers. Ice thickness changes derived from 3 successive glacier inventories of 1969, 1997 and 2006 are used for quantitative 3-D modeling based on rectangular prisms with basis areas of ≤ 8 m × 8 m. Local topographic changes due to man-made mass displacements close to the measuring site are modeled by a polyhedron approach. Two-thirds (2/3) of the observed gravity increase can be explained by the ablation model response and man-made effects. A positive trend of about 100 nm s<sup>−2</sup> remains. The origin of the residual trend remains open. Correcting for geodynamical processes like Alpine uplift or postglacial deformation is expected to cause a slight increase of this trend. The observed gravity signal shows seasonal gravity variations as well, which are probably due to snow cover effects but cannot be quantified due to the lack of appropriate snow cover information

    Laparoscopic Treatment of Gastroesophageal Reflux Disease in Children: How We Do It

    No full text
    Over decades now, laparoscopic Nissen fundoplication represents the treatment of choice for symptomatic children with gastroesophageal reflux disease (GERD) unresponsive to medication. Although the basic principles of Nissen's technique are still essential today, academic studies of long-Term results, complications, and patients benefits have fostered distinct modifications. Identification of surgical factors for wrap migration, dysphagia, and recurrent GERD led to recommendations for "short and floppy"wraps with minimal dissection of the phrenoesophageal membranes. This report summarizes up-To-date information from experts in the field on "how to wrap it right"followed by a critical discussion about long-Term benefits for children with GERD and future developments of laparoscopic Nissen fundoplication
    corecore