353 research outputs found

    Molecular Phylogenetics of Thecata (Hydrozoa, Cnidaria) Reveals Long-Term Maintenance of Life History Traits despite High Frequency of Recent Character Changes

    Get PDF
    Two fundamental life cycle types are recognized among hydrozoan cnidarians, the benthic (generally colonial) polyp stage either producing pelagic sexual medusae or directly releasing gametes elaborated from an attached gonophore. The existence of intermediate forms, with polyps producing simple medusoids, has been classically considered compelling evidence in favor of phyletic gradualism. In order to gain insights about the evolution of hydrozoan life history traits, we inferred phylogenetic relationships of 142 species of Thecata (= Leptothecata, Leptomedusae), the most species-rich hydrozoan group, using 3 different ribosomal RNA markers (16S, 18S, and 28S). In conflict with morphology-derived classifications, most thecate species fell in 2 well-supported clades named here Statocysta and Macrocolonia. We inferred many independent medusa losses among Statocysta. Several instances of secondary regain of medusoids (but not of full medusa) from medusa-less ancestors were supported among Macrocolonia. Furthermore, life cycle character changes were significantly correlated with changes affecting colony shape. For both traits, changes did not reflect graded and progressive loss or gain of complexity. They were concentrated in recent branches, with intermediate character states being relatively short lived at a large evolutionary scale. This punctuational pattern supports the existence of 2 alternative stable evolutionary strategies: simple stolonal colonies with medusae (the ancestral strategy, seen in most Statocysta species) versus large complex colonies with fixed gonophores (the derived strategy, seen in most Macrocolonia species). Hypotheses of species selection are proposed to explain the apparent long-term stability of these life history traits despite a high frequency of character change. Notably, maintenance of the medusa across geological time in Statocysta might be due to higher extinction rates for species that have lost this dispersive stag

    Patterns of genetic structure among Hawaiian corals of the genus Pocillopora yield clusters of individuals that are compatible with morphology.

    Get PDF
    International audienceSix variable sequence markers are developed and analyzed to find out species boundaries in Hawaiian corals of the genus Pocillopora: the putative mitochondrial control region; a recently discovered, hypervariable mitochondrial open reading frame; the internal transcribed spacer 2 (ITS2), located in the nuclear ribosomal DNA; three nuclear introns of calmodulin, elongation factor-1alpha and the ATP synthase beta subunit. Using the first two markers, we identify five distinct mitochondrial lineages and these lineages are compatible with morphology. The situation is more complex with nuclear markers since more than two haplotypes are observed in some individuals. To detect clusters of individuals, haplotype networks are constructed with additional connections drawn between co-occurring haplotypes to delineate potential fields for recombination: few clusters of nuclear haplotypes are found to correspond to clusters of individuals, but those that are detected (mostly in the ITS2 dataset) are also compatible with morphology

    Did glacial advances during the Pleistocene influence differently the demographic histories of benthic and pelagic Antarctic shelf fishes? – Inferences from intraspecific mitochondrial and nuclear DNA sequence diversity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Circum-Antarctic waters harbour a rare example of a marine species flock – the Notothenioid fish, most species of which are restricted to the continental shelf. It remains an open question as to how they survived Pleistocene climatic fluctuations characterised by repeated advances of continental glaciers as far as the shelf break that probably resulted in a loss of habitat for benthic organisms. Pelagic ecosystems, on the other hand, might have flourished during glacial maxima due to the northward expansion of Antarctic polar waters. In order to better understand the role of ecological traits in Quaternary climatic fluctuations, we performed demographic analyses of populations of four fish species from the tribe Trematominae, including both fully benthic and pelagic species using the mitochondrial cytochrome b gene and an intron from the nuclear S7 gene.</p> <p>Results</p> <p>Nuclear and cytoplasmic markers showed differences in the rate and time of population expansions as well as the likely population structure. Neutrality tests suggest that such discordance comes from different coalescence dynamics of each marker, rather than from selective pressure. Demographic analyses based on intraspecific DNA diversity suggest a recent population expansion in both benthic species, dated by the cyt b locus to the last glacial cycle, whereas the population structure of pelagic feeders either did not deviate from a constant-size model or indicated that the onset of the major population expansion of these species by far predated those of the benthic species. Similar patterns were apparent even when comparing previously published data on other Southern Ocean organisms, but we observed considerable heterogeneity within both groups with regard to the onset of major demographic events and rates.</p> <p>Conclusion</p> <p>Our data suggest benthic and pelagic species reacted differently to the Pleistocene ice-sheet expansions that probably significantly reduced the suitable habitat for benthic species. However, the asynchronous timing of major demographic events observed in different species within both "ecological guilds", imply that the species examined here may have different population and evolutionary histories, and that more species should be analysed in order to more precisely assess the role of life history in the response of organisms to climatic changes.</p

    AphanoDB: a genomic resource for Aphanomyces pathogens.

    Get PDF
    BACKGROUND: The Oomycete genus Aphanomyces comprises devastating plant and animal pathogens. However, little is known about the molecular mechanisms underlying pathogenicity of Aphanomyces species. In this study, we report on the development of a public database called AphanoDB which is dedicated to Aphanomyces genomic data. As a first step, a large collection of Expressed Sequence Tags was obtained from the legume pathogen A. euteiches, which was then processed and collected into AphanoDB. DESCRIPTION: Two cDNA libraries of A. euteiches were created: one from mycelium growing on synthetic medium and one from mycelium grown in contact to root tissues of the model legume Medicago truncatula. From these libraries, 18,684 expressed sequence tags were obtained and assembled into 7,977 unigenes which were compared to public databases for annotation. Queries on AphanoDB allow the users to retrieve information for each unigene including similarity to known protein sequences, protein domains and Gene Ontology classification. Statistical analysis of EST frequency from the two different growth conditions was also added to the database. CONCLUSION: AphanoDB is a public database with a user-friendly web interface. The sequence report pages are the main web interface which provides all annotation details for each unigene. These interactive sequence report pages are easily available through text, BLAST, Gene Ontology and expression profile search utilities. AphanoDB is available from URL: http://www.polebio.scsv.ups-tlse.fr/aphano/

    A new genomic resource dedicated to wood formation in Eucalyptus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Renowned for their fast growth, valuable wood properties and wide adaptability, <it>Eucalyptus </it>species are amongst the most planted hardwoods in the world, yet they are still at the early stages of domestication because conventional breeding is slow and costly. Thus, there is huge potential for marker-assisted breeding programs to improve traits such as wood properties. To this end, the sequencing, analysis and annotation of a large collection of expressed sequences tags (ESTs) from genes involved in wood formation in <it>Eucalyptus </it>would provide a valuable resource.</p> <p>Results</p> <p>We report here the normalization and sequencing of a cDNA library from developing <it>Eucalyptus </it>secondary xylem, as well as the construction and sequencing of two subtractive libraries (juvenile <it>versus </it>mature wood and <it>vice versa</it>). A total of 9,222 high quality sequences were collected from about 10,000 cDNA clones. The EST assembly generated a set of 3,857 wood-related unigenes including 2,461 contigs (Cg) and 1,396 singletons (Sg) that we named 'EUCAWOOD'. About 65% of the EUCAWOOD sequences produced matches with poplar, grapevine, <it>Arabidopsis </it>and rice protein sequence databases. BlastX searches of the Uniref100 protein database allowed us to allocate gene ontology (GO) and protein family terms to the EUCAWOOD unigenes. This annotation of the EUCAWOOD set revealed key functional categories involved in xylogenesis. For instance, 422 sequences matched various gene families involved in biosynthesis and assembly of primary and secondary cell walls. Interestingly, 141 sequences were annotated as transcription factors, some of them being orthologs of regulators known to be involved in xylogenesis. The EUCAWOOD dataset was also mined for genomic simple sequence repeat markers, yielding a total of 639 putative microsatellites. Finally, a publicly accessible database was created, supporting multiple queries on the EUCAWOOD dataset.</p> <p>Conclusion</p> <p>In this work, we have identified a large set of wood-related <it>Eucalyptus </it>unigenes called EUCAWOOD, thus creating a valuable resource for functional genomics studies of wood formation and molecular breeding in this economically important genus. This set of publicly available annotated sequences will be instrumental for candidate gene approaches, custom array development and marker-assisted selection programs aimed at improving and modulating wood properties.</p

    Evolutionary Advantage Conferred by an Eukaryote-to-Eukaryote Gene Transfer Event in Wine Yeasts

    Get PDF
    Although an increasing number of horizontal gene transfers have been reported in eukaryotes, experimental evidence for their adaptive value is lacking. Here, we report the recent transfer of a 158-kb genomic region between Torulaspora microellipsoides and Saccharomyces cerevisiae wine yeasts or closely related strains. This genomic region has undergone several rearrangements in S. cerevisiae strains, including gene loss and gene conversion between two tandemly duplicated FOT genes encoding oligopeptide transporters. We show that FOT genes confer a strong competitive advantage during grape must fermentation by increasing the number and diversity of oligopeptides that yeast can utilize as a source of nitrogen, thereby improving biomass formation, fermentation efficiency, and cell viability. Thus, the acquisition of FOT genes has favored yeast adaptation to the nitrogen-limited wine fermentation environment. This finding indicates that anthropic environments offer substantial ecological opportunity for evolutionary diversification through gene exchange between distant yeast species
    • …
    corecore