476 research outputs found

    Numerical modelling and experimental validation of dynamic fracture events along weak planes

    Get PDF
    The conceptual simplicity and the ability of cohesive finite element models to describe complex fracture phenomena makes them often the approach of choice to study dynamic fracture. These models have proven to reproduce some experimental features, but to this point, no systematic study has validated their predictive ability; the difficulty in producing a sufficiently complete experimental record, and the intensive computational requirements needed to obtain converged simulations are possible causes. Here, we present a systematic integrated numerical–experimental approach to the verification and validation (V&V) of simulations of dynamic fracture along weak planes. We describe the intertwined computational and the experimental sides of the work, present the V&V results, and extract general conclusions about this kind of integrative approach

    Abordaje clínico del choque séptico. II parte: tratamiento del choque séptico

    Get PDF
    El manejo del choque séptico necesita de un tratamiento temprano y apropiado para mejorar su pronóstico. Con una administración temprana de los antibióticos apropiados, el drenaje de las fuentes de infección, un manejo hemodinámico optimizado, el uso de ventilación de protección pulmonar y el uso juicioso de los esteroides y la insulinoterapia, la meta en la reducción de la mortalidad puede ser alcanzada

    Simulating Physical Phenomena by Quantum Networks

    Full text link
    Physical systems, characterized by an ensemble of interacting elementary constituents, can be represented and studied by different algebras of observables or operators. For example, a fully polarized electronic system can be investigated by means of the algebra generated by the usual fermionic creation and annihilation operators, or by using the algebra of Pauli (spin-1/2) operators. The correspondence between the two algebras is given by the Jordan-Wigner isomorphism. As we previously noted similar one-to-one mappings enable one to represent any physical system in a quantum computer. In this paper we evolve and exploit this fundamental concept in quantum information processing to simulate generic physical phenomena by quantum networks. We give quantum circuits useful for the efficient evaluation of the physical properties (e.g, spectrum of observables or relevant correlation functions) of an arbitrary system with Hamiltonian HH.Comment: 44 pages, 15 psfigur

    Factors influencing carbon stocks and accumulation rates in eelgrass meadows across New England, USA

    Get PDF
    Increasing the protection of coastal vegetated ecosystems has been suggested as one strategy to compensate for increasing carbon dioxide (CO2) in the atmosphere as the capacity of these habitats to sequester and store carbon exceeds that of terrestrial habitats. Seagrasses are a group of foundation species that grow in shallow coastal and estuarine systems and have an exceptional ability to sequester and store large quantities of carbon in biomass and, particularly, in sediments. However, carbon stocks (Corg stocks) and carbon accumulation rates (Corg accumulation) in seagrass meadows are highly variable both spatially and temporally, making it difficult to extrapolate this strategy to areas where information is lacking. In this study, Corg stocks and Corg accumulation were determined at 11 eelgrass meadows across New England, representing a range of eutrophication and exposure conditions. In addition, the environmental factors and structural characteristics of meadows related to variation in Corg stocks were identified. The objectives were accomplished by assessing stable isotopes of δ13C and δ15N as well as %C and %N in plant tissues and sediments, measuring grain size and 210Pb of sediment cores, and through assessing site exposure. Variability in Corg stocks in seagrass meadows is well predicted using commonly measured environmental variables such as grain size distribution. This study allows incorporation of data and insights for the northwest Atlantic, where few studies on carbon sequestration by seagrasses have been conducted

    Organic carbon sequestration and storage in vegetated coastal habitats along the western coast of the Arabian Gulf

    Get PDF
    Certain coastal ecosystems such as mangrove, saltmarsh and seagrass habitats have been identified as significant natural carbon sinks, through the sequestration and storage of carbon in their biomass and sediments, collectively known as \u27blue carbon\u27 ecosystems. These ecosystems can often thrive in extreme environments where terrestrial systems otherwise survive at the limit of their existence, such as in arid and desert regions of the globe. To further our understanding of the capability of blue carbon ecosystems to sequester and store carbon in such extreme climates, we measured carbon sediment stocks in 25 sites along the Western Arabian Gulf coast. While seagrass meadows and saltmarsh habitats were widely distributed along the coast, mangrove stands were much reduced as a result of anthropogenic pressures, with 90% of stands having been lost over the last century. Carbon stocks in 1 m deep surface sediments were similar across all three blue carbon habitats, with comparable stocks for saltmarsh (81 ± 22 Mg Corg ha−1), seagrass (76 ± 20 Mg Corg ha−1) and mangroves (76 ± 23 Mg Corg ha−1). We recorded a 38% decrease in carbon stocks between mature established mangrove stands (91 Mg Corg ha−1) and recently planted mangroves (56 Mg Corg ha−1). Mangroves also had the lowest carbon stock per total area owing to their very limited spatial coverage along the coast. The largest stock per total area belonged to seagrass beds as a result of their large spatial coverage within the Gulf. We employed 210Pb dating to determine the sediment accretion rates in each ecosystem and found mangrove habitats to be the most efficient carbon sequesters over the past century, with the highest carbon burial rate of the three ecosystems (19 g Corg m−2 yr−1), followed by seagrass (9 g Corg m−2 yr−1) and saltmarshes (8 g Corg m−2 yr−1). In this work, we describe a comprehensive comparison of sediment stocks in different blue carbon ecosystems within a single marine environment and across a large geographical area, and discuss our results in a global context for other blue carbon ecosystems in the dry tropics

    Impact of mooring activities on carbon stocks in seagrass meadows

    Get PDF
    Boating activities are one of the causes that threaten seagrass meadows and the ecosystem services they provide. Mechanical destruction of seagrass habitats may also trigger the erosion of sedimentary organic carbon (Corg) stocks, which may contribute to increasing atmospheric CO2. This study presents the first estimates of loss of Corg stocks in seagrass meadows due to mooring activities in Rottnest Island, Western Australia. Sediment cores were sampled from seagrass meadows and from bare but previously vegetated sediments underneath moorings. The Corg stores have been compromised by the mooring deployment from 1930s onwards, which involved both the erosion of existing sedimentary Corg stores and the lack of further accumulation of Corg. On average, undisturbed meadows had accumulated ~6.4 Kg Corg m−2 in the upper 50 cm-thick deposits at a rate of 34 g Corg m−2 yr−1. The comparison of Corg stores between meadows and mooring scars allows us to estimate a loss of 4.8 kg Corg m−2 in the 50 cm thick deposits accumulated over ca. 200 yr as a result of mooring deployments. These results provide key data for the implementation of Corg storage credit offset policies to avoid the conversion of seagrass ecosystems and contribute to their preservation

    GEMINI near-infrared spectroscopic observations of young massive stars embedded in molecular clouds

    Full text link
    K-band spectra of young stellar candidates in four southern hemisphere clusters have been obtained with the near-infrared spectrograph GNIRS in Gemini South. The clusters are associated with IRAS sources that have colours characteristic of ultracompact HII regions. Spectral types were obtained by comparison of the observed spectra with those of a NIR library; the results include the spectral classification of nine massive stars and seven objects confirmed as background late-type stars. Two of the studied sources have K-band spectra compatible with those characteristic of very hot stars, as inferred from the presence of Civ, Niii, and Nv emission lines at 2.078 micron, 2.116 micron, and 2.100 micron respectively. One of them, I16177 IRS1, has a K-band spectrum similar to that of Cyg OB2 7, an O3If* supergiant star. The nebular K-band spectrum of the associated UC Hii region shows the s-process [Kriii] and [Seiv] high excitation emission lines, previously identified only in planetary nebula. One young stellar object (YSO) was found in each cluster, associated with either the main IRAS source or a nearby resolved MSX component, confirming the results obtained from previous NIR photometric surveys. The distances to the stars were derived from their spectral types and previously determined JHK magnitudes; they agree well with the values obtained from the kinematic method, except in the case of IRAS15408-5356, for which the spectroscopic distance is about a factor two smaller than the kinematic value.Comment: This is the version that will be published by the Montly Notices of the Royal Astronomical Societ

    Role of carbonate burial in Blue Carbon budgets

    Get PDF
    Calcium carbonates (CaCO3) often accumulate in mangrove and seagrass sediments. As CaCO3 production emits CO2, there is concern that this may partially offset the role of Blue Carbon ecosystems as CO2sinks through the burial of organic carbon (Corg). A global collection of data on inorganic carbon burial rates (Cinorg, 12% of CaCO3 mass) revealed global rates of 0.8 TgCinorg yr−1 and 15–62 TgCinorg yr−1 in mangrove and seagrass ecosystems, respectively. In seagrass, CaCO3burial may correspond to an offset of 30% of the net CO2 sequestration. However, a mass balance assessment highlights that the Cinorg burial is mainly supported by inputs from adjacent ecosystems rather than by local calcification, and that Blue Carbon ecosystems are sites of net CaCO3 dissolution. Hence, CaCO3 burial in Blue Carbon ecosystems contribute to seabed elevation and therefore buffers sea-level rise, without undermining their role as CO2 sinks
    corecore