580 research outputs found

    The Ciao clp(FD) library. A modular CLP extension for Prolog

    Get PDF
    We present a new free library for Constraint Logic Programming over Finite Domains, included with the Ciao Prolog system. The library is entirely written in Prolog, leveraging on Ciao's module system and code transformation capabilities in order to achieve a highly modular design without compromising performance. We describe the interface, implementation, and design rationale of each modular component. The library meets several design goals: a high level of modularity, allowing the individual components to be replaced by different versions; highefficiency, being competitive with other TT> implementations; a glass-box approach, so the user can specify new constraints at different levels; and a Prolog implementation, in order to ease the integration with Ciao's code analysis components. The core is built upon two small libraries which implement integer ranges and closures. On top of that, a finite domain variable datatype is defined, taking care of constraint reexecution depending on range changes. These three libraries form what we call the TT> kernel of the library. This TT> kernel is used in turn to implement several higher-level finite domain constraints, specified using indexicals. Together with a labeling module this layer forms what we name the TT> solver. A final level integrates the CLP (J7©) paradigm with our TT> solver. This is achieved using attributed variables and a compiler from the CLP (J7©) language to the set of constraints provided by the solver. It should be noted that the user of the library is encouraged to work in any of those levels as seen convenient: from writing a new range module to enriching the set of TT> constraints by writing new indexicals

    Two-level interacting boson models beyond the mean field

    Get PDF
    The phase diagram of two-level boson Hamiltonians, including the Interacting Boson Model (IBM), is studied beyond the standard mean field approximation using the Holstein-Primakoff mapping. The limitations of the usual intrinsic state (mean field) formalism concerning finite-size effects are pointed out. The analytic results are compared to numerics obtained from exact diagonalizations. Excitation energies and occupation numbers are studied in different model space regions (Casten triangle for IBM) and especially at the critical points.Comment: 14 pages, 13 figure

    Core excitation effects in the breakup of halo nuclei

    Get PDF
    The role of core excitation in the structure and dynamics of two-body halo nuclei is investigated. We present calculations for the resonant breakup of 11Be on protons at an incident energy of 63.7 MeV/nucleon, where core excitation effects were shown to be important. To describe the reaction, we use a recently developed extension of the DWBA formalism which incorporates these core excitation effects within the no-recoil approximation. The validity of the no-recoil approximation is also examined by comparing with DWBA calculations which take into account core recoil. In addition, calculations with two different continuum representations are presented and compared.Ministerio de Ciencia e Innovación FIS2011-28738-c02-01, FPA2009- 07653, FPA2009-08848, CSD2007-00042Junta de Andalucía FQM160, P07-FQM-0289

    Relationship between X(5)-models and the interacting boson model

    Get PDF
    The connections between the X(5)-models (the original X(5) using an infinite square well, X(5)-β8\beta^8, X(5)-β6\beta^6, X(5)-β4\beta^4, and X(5)-β2\beta^2), based on particular solutions of the geometrical Bohr Hamiltonian with harmonic potential in the γ\gamma degree of freedom, and the interacting boson model (IBM) are explored. This work is the natural extension of the work presented in [1] for the E(5)-models. For that purpose, a quite general one- and two-body IBM Hamiltonian is used and a numerical fit to the different X(5)-models energies is performed, later on the obtained wave functions are used to calculate B(E2) transition rates. It is shown that within the IBM one can reproduce well the results for energies and B(E2) transition rates obtained with all these X(5)-models, although the agreement is not so impressive as for the E(5)-models. From the fitted IBM parameters the corresponding energy surface can be extracted and it is obtained that, surprisingly, only the X(5) case corresponds in the moderate large N limit to an energy surface very close to the one expected for a critical point, while the rest of models seat a little farther.Comment: Accepted in Physical Review

    On the relation between E(5)E(5)-models and the interacting boson model

    Get PDF
    The connections between the E(5)E(5)-models (the original E(5) using an infinite square well, E(5)β4E(5)-\beta^4, E(5)β6E(5)-\beta^6 and E(5)β8E(5)-\beta^8), based on particular solutions of the geometrical Bohr Hamiltonian with γ\gamma-unstable potentials, and the interacting boson model (IBM) are explored. For that purpose, the general IBM Hamiltonian for the U(5)O(6)U(5)-O(6) transition line is used and a numerical fit to the different E(5)E(5)-models energies is performed, later on the obtained wavefunctions are used to calculate B(E2) transition rates. It is shown that within the IBM one can reproduce very well all these E(5)E(5)-models. The agreement is the best for E(5)β4E(5)-\beta^4 and reduces when passing through E(5)β6E(5)-\beta^6, E(5)β8E(5)-\beta^8 and E(5), where the worst agreement is obtained (although still very good for a restricted set of lowest lying states). The fitted IBM Hamiltonians correspond to energy surfaces close to those expected for the critical point. A phenomenon similar to the quasidynamical symmetry is observed

    On the relation between algebraic and configuration space calculations of molecular vibrations

    Get PDF
    The relation between algebraic and traditional calculations of molecular vibrations is investigated. An explicit connection between interactions in configuration space and the corresponding algebraic interactions is established.European Community IN105194Dirección General de Investigación Científica y Técnica (DGCYT) PB92-066

    A calculation of low-lying collective states in odd-even nuclei

    Get PDF
    We present results of a calculation of properties of low-lying collective quadrupole states in odd-even nuclei within the framework of the proton-neutron interacting boson-fermion model

    Temperature measurements on ES steel sheets subjected to perforation by hemispherical projectiles

    Get PDF
    In this paper is reported a study on the behaviour of ES mild steel sheets subjected to perforation by hemispherical projectiles. Experiments have been conducted using a pneumatic cannon within the range of impact velocities 5m/s<=V0<=60m/s. The experimental setup allowed evaluating initial velocity, failure mode and post-mortem deflection of the plates. The tests have been recorded using high speed infrared camera. It made possible to obtain temperature contours of the specimen during impact. Thus, special attention is focussed on the thermal softening of the material which is responsible for instabilities and failure. Assuming adiabatic conditions of deformation, the increase of temperature may be related to the plastic deformation. The critical strain leading to target-failure is evaluated coupling temperature measurements with numerical simulations and with analytical predictions obtained by means of the Rusinek-Klepaczko constitutive relation [Rusinek, A., Klepaczko, J.R. Shear testing of sheet steel at wide range of strain rates and a constitutive relation with strain rate and temperature dependence of the flow stress. Int J Plasticity. 2001; 17, 87-115]. It has been estimated that the process of localization of plastic deformation which leads to target-failure involves local values close to for the boundary value problem approached. Subsequently, this failure strain level has been applied to simulate the perforation process and the numerical results obtained show satisfactory agreement with the experiments in terms of ballistic limit, temperature increase and failure mode of the target.The researchers of the University Carlos III of Madrid are indebted to the Comunidad Autónoma de Madrid (Project CCG08 UC3M/MAT 4464) and to the Ministerio de Ciencia e Innovación de España (Project DPI/2008 06408)Publicad
    corecore