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I. INTRODUCTION

The concepts of phase transition and critical points have
been defined, strictly speaking, for macroscopic systems.
However, it has been recently suggested that precursors of
phase transitions can be observed in finite-size mesoscopic
systems [1]. In nuclear physics, the different nuclear shapes
and the phase transitions between them are conveniently
studied within the interacting boson model (IBM) [2]. This
was recognized soon after the introduction of the model
[3–7] but has been studied more thoroughly in the last few
years [8–18] after the introduction of the concept of critical
point symmetries [19–21]. Since the IBM was formulated
from the beginning in terms of creation and annihilation
boson operators, its geometric interpretation in terms of shape
variables is usually done by introducing a boson condensate
with two shape parameters, β and γ (order parameters) [3,22].
The parameter β is related to the axial deformation of the
system, while γ measures the deviation from axial symmetry.
The equilibrium shape of the system is obtained by minimizing
the expectation value of the Hamiltonian in the intrinsic state.
Shape phase transitions are studied theoretically using one or
more control parameters in the Hamiltonian. These control
parameters drive the system in different phases characterized
by order parameters and allows one to study in a simple way
phase transitions and critical points in nuclear physics.

The phase diagram of the IBM has been studied using
several approaches [8–12,14,16–18], and it is well known that
the dynamical symmetry associated with U(5) corresponds to
a spherical shape (β = 0), the dynamical symmetry SU(3) is
associated with an axially deformed shape (γ = 0, π/3, β �=
0), and the dynamical symmetry O(6) is related to a γ -unstable
deformed shape (β �= 0 and γ independent). These symmetry
limits are usually represented as the vertices of a triangle
(Casten triangle) [23]. Phase transitions between these shapes
have been widely studied, and it is known that the phase
transition from U(5) to O(6) is second order, while any other
transition within the Casten triangle from a spherical to a

deformed shape is first order [9,12]. These studies have been
performed, as mentioned above, by using the intrinsic state
formalism. However, this approximate method is known to
be only correct at leading order in a 1/N expansion, where
N is the number of bosons. In this paper, we present a
method that goes beyond this order and computes finite-size
corrections to several spectroscopic observables. We stress that
1/N corrections obtained with the intrinsic state formalism (or
Hartree-Bose method) are in general incorrect, and they give
no information on the proper finite-size corrections.

The paper is organized as follows. First the model
Hamiltonian is introduced in Sec. II. In Sec. III, the Holstein-
Primakoff mapping [24] is performed leading to a boson
Hamiltonian in which we retain terms in orders N,N1/2,
and N0. Then a Bogoliubov transformation is performed to
diagonalize the Hamiltonian and to study both the symmetric
(spherical) and the broken (deformed) phases. All this is done
in general for two-level boson models in which the lowest
level is a scalar s boson while the upper level is an arbitrary
L boson. The IBM corresponds to the particular case L = 2
(dµ bosons). We also present results for the case L = 0 as an
illustration of the general method. In Sec. IV, we compare
the analytical results with exact numerical diagonalizations
for different paths along the Casten triangle. Finally, Sec. V
presents the summary and conclusions.

II. THE MODEL

As already noted in Ref. [14], the experimental exploration
of the shape transition and critical points in nuclei is difficult
because of the lack of a continuous control parameter.
However, in theoretical studies, this limitation is overcome
by using a Hamiltonian written in terms of one or more
control parameters that can vary continuously. In this work,
we consider a two-level boson model in which the lowest
level is characterized by a zero angular momentum (s boson),
while the upper level has an arbitrary angular momentum L.
The Hamiltonian proposed is a generalization of the IBM
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consistent-Q formalism (CQF) [25], which depends on two
control parameters x and χ ,

H = x nL − 1 − x

N
Qχ · Qχ, (1)

where nL = ∑
µ L†

µLµ is the operator for the number of
bosons in the upper level, N is the total number of bosons,
the symbol · stands for the scalar product defined as a · b =∑+L

µ=−L(−1)µaµb−µ, and Qχ is a multipole operator written
as

Qχ
µ = (s†L̃ + L†s )(L)

µ + χ [L† × L̃ ](L)
µ , (2)

where L̃µ = (−1)µL −µ. For L = 2 (d bosons), the
Hamiltonian (1) is the well-known CQF Hamiltonian for IBM.
Though it is not the most general IBM Hamiltonian, it captures
the most important low-energy properties of a wide range of
nuclei [26–28]. In particular, it is general enough to describe
different nuclear phases and quantum phase transitions, and it
has been used for that purpose at the mean field level [9,10,12].

The Hamiltonian (1) comprises different models depending
on the value of L. For instance, for L = 1 the Hamiltonian
is appropriate for studying the phase diagram of the vibron
model [29] of interest in molecular physics.

III. MEAN FIELD AND BEYOND

The usual way of getting the phase diagram of the model (1)
is to introduce shape variables. This can be done by considering
the intrinsic state formalism, also called the Hartree-Bose
approximation [3,5,22,30]. In this approach, the ground state
is a variational state built out of a condensate of “dressed”
bosons, which are independent bosons moving in the average
nuclear field. For L = 2, these bosons are defined as

�†
c = 1√

1 + β2

(
s† + β cos γ d

†
0 + 1√

2
β sin γ (d†

2 + d
†
−2)

)
,

(3)

and the N boson condensate is

|c〉 = 1√
N !

(�†
c)N |0〉. (4)

The variational variables β and γ are the order parameters
of the system, and their equilibrium values are fixed by
minimizing the expectation value of the energy. The expression
of this energy can be found in many references [3,22,30,31]
and can be written schematically as

E(N, β, γ, x, χ ) = NF (1)(N, β, γ, x, χ )

+ (N − 1)F (2)(N, β, γ, x, χ ), (5)

where F (1)(N, β, γ, x, χ ) is the matrix element of the one-
body operators divided by N , and F (2)(N, β, γ, x, χ ) is the
matrix element of the two-body operators divided by N − 1.
Note that there is no N2 dependence in the two-body operator
because of the definition of the Hamiltonian. Actually, the
only relevant contribution is the leading one (order N ), since
the next one (N0, for instance) are incomplete as explained
below.

For the standard IBM Hamiltonian (L = 2), with an
attractive quadrupole interaction, the nucleus always becomes
axially deformed, either prolate (γ = 0) for χ < 0 or oblate
(γ = π/3) for χ > 0. As a consequence, the parameter γ

can be incorporated in the value of β. β > 0 corresponds to
γ = 0, while negative β implies γ = π/3. In the case χ = 0,
the nucleus becomes γ unstable; i.e., the energy is independent
of γ .

In this framework, one-phonon excitations above the
ground state are constructed by directly replacing in the ground
state (4) a condensate boson by an excited boson, this proce-
dure is known as the Tamm-Dancoff approximation (TDA)
method, or by including ground state fluctuations, which is
the random phase approximation (RPA) method [5,31,32]. For
L = 2, there are five excited phonons that are characterized
by their angular momentum projection K and can be labeled
as β excitation with K = 0, γ excitations with K = ±2, and
finally two K = ±1 excitations. Note that not all the excited
phonons are always physical, some of them become spurious
Goldstone bosons associated with broken symmetries. This is
the case for axially deformed nuclei; the K = ±1 excitations
are spurious Goldstone bosons because the state constructed
with this excitation corresponds to an O(3) rotation of the
whole system. In the case of γ -unstable nuclei, the K =
±2 excitations also become Goldstone bosons and are related
to O(5) rotations of the ground state. In the case of L = 0,

only a K = 0 excitation exists, and it is directly related, as we
will see, with the β band of the IBM [33].

The mean field description of the ground state energy just
mentioned is only valid at order N . The first quantum correc-
tions can be obtained within the RPA formalism. Alternatively,
the Holstein-Primakoff expansion [24] offers a simple and
natural expansion in powers of 1/N . The advantages of this
transformation are that it is Hermitian, preserves the boson
commutation relation, and provides a correct expansion in
powers of N . Furthermore, its leading order coincides with
the mean field contribution.

The Holstein-Primakoff expansion eliminates the s boson
transforming the bilinear boson operators in the following way:

L†
µLν = b†µbν, (6)

L†
µs = N1/2b†µ(1 − nb/N )1/2 = (s†Lµ)†, (7)

s†s = N − nb, (8)

where the b bosons satisfy [bµ, b†ν] = δµ,ν . The mapping
fulfills the commutation relations at each order in N in the
Taylor expansion of the square root.

We next introduce the c bosons through a shift transforma-
tion

b†µ =
√

Nλ∗
µ + c†µ, (9)

where the λµ are complex numbers that form a (2L + 1)-
dimensional vector. This shift allows for a macroscopic
occupation number nb. Thus, it allows one to consider at
the same time the spherical phase, setting λµ = 0 for all µ,
and the deformed phase, λµ �= 0. In this latter situation, we
shall only consider the case λ0 �= 0 without loss of generality.
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The Hamiltonian then reads

H = N1λ2
0

{
5x − 4 − 4(x − 1)λ2

0 + (x − 1)χα
(L)
0,0λ0

× [
4
(
1 − λ2

0

)1/2 + χα
(L)
0,0λ0

]} + N1/2λ0(c†0 + c0)

×
{

5x − 4 − 8λ2
0(x − 1) + 2(x − 1)χα

(L)
0,0λ0

×
[

−4λ2
0 + 3(

1 − λ2
0

)1/2 + χα
(L)
0,0λ0

]}

+N0

{[
3x − 2 − 6λ2

0(x − 1)
]
nc + (x − 1)

[
(2L + 1)

− (2L + 3)λ2
0 + (

1 − λ2
0

)
(P †

c + Pc)

− 4λ2
0

(
c
†2
0 + 2c

†
0c0 + c2

0

)] + 2χ (x − 1)

×
{

λ0(1 − λ2
0)1/2

[ +L∑
µ=−L

α
(L)
0,µ + 2c†µcµ

[
(−1)µα

(L)
µ,−µ

+α
(L)
0,µ

] + (−1)µα
(L)
µ,0(c†µc

†
−µ + cµc−µ

]

− λ3
0α

(L)
0,0

2
(
1 − λ2

0

)1/2

[
2 + 3

(
c
†2
0 + 2c

†
0c0 + c2

0

) + 2nc

]

− λ5
0α

(L)
0,0

4
(
1 − λ2

0

)3/2

(
1 + c

†2
0 + 2c

†
0c0 + c2

0

)}

+χ2(x − 1)λ2
0

{
1 +

+L∑
µ=−L

2c†µcµ

[
(−1)µα

(L)
0,0α

(L)
µ,−µ

+α
(L)
0,µ

2] + (−1)µα
(L)
0,µ

2
(c†µc

†
−µ + cµc−µ)

}}

+O(1/
√

N ), (10)

= H1 + H1/2 + H0 + O(1/
√

N ), (11)

where α(L)
µ,ν = 〈L,µ; Lν|L,µ + ν〉 and P

†
c = c† · c† = (Pc)†.

The term of order N (H1) is exactly the mean field energy.
Setting λ = β/

√
1 + β2, one gets

E(N, β, x, y) = N
β2

(1 + β2)2
[5x − 4 + xβ2

+βy(x − 1)(4 + βy)], (12)

where y = χα
(L)
0,0 . In the case of L = 2, Eq. (12) reduces to

the IBM ground state energy. Note that H1 only depends on L

through the Clebsch-Gordan coefficient 〈L,µ; Lν|L,µ + ν〉,
although this dependence can be absorbed in the parameter y.

H1 provides the mean field energy and therefore the
equilibrium values of the order parameter. Figure 1 depicts the
phase diagram corresponding to H1. For given parameters x

and χ (y), the first step consists in minimizing H1 with respect
to β(λ), getting the equilibrium value β0(λ0). The study of
these minima has been shown in several publications [4,7], but
for completeness we summarize here the main features:

(i) β = 0 is always a stationary point. For x < 4/5, β =
0 is a maximum, while for x > 4/5, it becomes a
minimum. In the case of x = 4/5, β = 0 is an inflection

S

D

O(6)

SU(3)U(5)

φ
ρ

antispinodalcriticalspinodal

FIG. 1. Qualitative phase diagram for the Hamiltonian (1) and
L = 2. Insets show typical energy surfaces vs deformation parameter
β in each of the phases and at the phase borders. Control variables
are defined as ρ = 1 − x and φ = 2π

3
√

7
(

√
7

2 + χ ).

point. x = 4/5 is the point at which a minimum at β = 0
starts to develop and defines the antispinodal line.

(ii) For χ �= 0(y �= 0), there exists a region, where two
minima, one spherical and one deformed, coexist. This
region is defined by the point at which the β = 0
minimum appears (antispinodal point) and the point
at which the β �= 0 minimum appears (spinodal point).
The spinodal line is defined by the implicit equation

3 x

3 x − 4
= A

B

[
1 −

(
1 + B

A

) 3
2

]
, (13)

where A = [4 − 3 x + 2 (x − 1) y2]2 and B =
36 y2(x − 1)2. The SU(3) case, χ = −√

7/2, provides
x � 0.820361.

(iii) In the coexistence region, the critical point is defined
as the situation in which both minima (spherical and
deformed) are degenerate. At the critical point, the
two degenerated minima are at β0 = 0 and β0 =
α

(L)
0,0χ/2(β0 = y/2) and their energy is equal to zero.

The critical point line can be calculated to be

xc = 4 + y2

5 + y2
= 4 + χ2〈L, 0; L0|L, 0〉2

5 + χ2〈L, 0; L0|L, 0〉2
. (14)

In the case of L = 2,

xc = 4 + 2
7χ2

5 + 2
7χ2

, (15)

being in the SU(3) limit (χ = −√
7/2), xc = 9/11.

(iv) According to the previous analysis, a first-order phase
transition appears for χ �= 0(y �= 0); while for χ =
0(y = 0), an isolated point of second-order phase tran-
sition occurs at x = 4/5. In this last case, antispinodal,
spinodal, and critical points collapse into a single
point.
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The substitution of β0(λ0) in the Hamiltonian (11) implies
that the term of order N1/2 vanishes because it is proportional
to the derivative of H1 with respect to λ. More precisely,
one has that ∂H1/∂λ = 2H1/2. The first quantum correction
comes from the N0 term which is a simple quadratic form in
the c-boson operators. It can thus be diagonalized through a
Bogoliubov transformation. This transformation depends on
the phase, spherical or deformed, and in the next subsections
both will be treated separately.

A. Bogoliubov transformation in the spherical phase

In the spherical phase, β = 0 (λµ = 0 for all µ) and x >

4/5. In this case, the Hamiltonian (11) reads as

H = (3x − 2)nc + (x − 1)[(2L+ 1) + (P †
c + Pc)] + O(1/N),

(16)

which is straightforwardly diagonalized via a Bogoliubov
transformation

c†µ = uµξ †
µ + vµξ̃µ,

(17)
c̃µ = uµξ̃µ + vµξ †

µ,

where the coefficients verify u2
µ − v2

µ = 1, with uµ = u−µ and
vµ = v−µ. The phases of the coefficients are chosen so as to
minimize the mean field energy, leading to

H = 2L + 1

2
[−x + �(x)1/2] + nξ �(x)1/2 + O(1/N), (18)

where we have introduced �(x) = x(5x − 4), and nξ is the
number operator for ξ bosons. Note that in the spherical phase,
the mean field energy is equal to zero. In this phase, which is
only defined for 4/5 � x � 1, the spectrum is, at this order,
independent of χ (y) and has a trivial dependence on L. As
shown in Ref. [33] for L = 0, one has to diagonalize H at next
order (1/N ) to see the role played by this parameter.

In this phase there exists a (2L + 1) times degenerated
phonon (5 in the IBM case), ξ . The Hamiltonian is completely
harmonic, and therefore the two phonon excitation energy is
exactly twice the one phonon excitation energy.

Another observable of interest that can be calculated easily
is the number of L bosons in each state. For the calculation
of such an observable, the Hellmann-Feynman theorem can
be used. It establishes that the derivative of the eigenvalue
of a given operator, e.g., the Hamiltonian, is equal to the
expectation value of the derivative of this operator with the
corresponding eigenfunction. This leads to

〈nL〉 = ∂

∂θ
[(1 + θ )〈H 〉], (19)

where θ = x
1−x

. In this case, the contribution from the mean
field is zero, and the first nonvanishing contribution comes
from the term proportional to N0 in the energy. Therefore,

〈nL〉gs = 2L + 1

2

[
3x − 2

�(x)
− 1

]
+ O(1/N ), (20)

〈nL〉pξ = 〈nL〉gs + p

[
3x − 2

�(x)

]
+ O(1/N), (21)

where 〈nL〉gs stands for the expectation value of the number
of L bosons in the ground state, p is the number of excited
ξ bosons and 〈nL〉pξ stands for the expectation value of the
number of L bosons in the state with p excited ξ bosons. The
N0 correction is singular at x = 4/5 as already noted in similar
models [34,35].

Note that here we have chosen β0 as an order parameter,
but we could have taken 〈nL〉gs equivalently. Indeed, in the
thermodynamic limit, this quantity is only nonvanishing in the
deformed phase, as we shall now see.

B. Bogoliubov transformation in the deformed phase

In the deformed phase, where β0 �= 0 (λ0 �= 0), the situation
is more complicated and strongly depends on L. In the
following, we will discuss separately the two cases L =
0, 2, but we emphasize that the form (11) of the expanded
Hamiltonian allows the study of arbitrary L.

1. The case L = 0

The case L = 0 has recently attracted much attention
because at the mean field level, it reproduces exactly the
IBM phase diagram (although, of course, it does not include
K = 2 excitations). In Ref. [33], we computed the finite-size
corrections up to 1/N order in the spherical phase. Here, we
will now treat the deformed phase at order (1/N )0. At this
order, for L = 0, the Hamiltonian is easily diagonalized via a
Bogoliubov transformation over the c scalar boson, and one
gets

H = E(x, y, β0) + 1

2
(
1 + β2

0

) [ − x + (7x − 8)β2
0

+ 2(x − 1)yβ0
( − 2 − yβ0 + 2β2

0

)] + �(x, y, β0)1/2

2

+ nξ�(x, y, β0)1/2 + O(1/N), (22)

where E(x, y, β0) is given by Eq. (12),

�(x, y, β0) =
[
x − (3x − 4)β2

0 + 2(x − 1)yβ0
(
2 + yβ0 − β2

0

)][
5x − 4 − (19x − 20)β2

0 + 2(x − 1)yβ0
(
6 + 3yβ0 − 7β2

0 − β4
0

)]
(
1 + β2

0

)2

(23)
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and y = χ . In this case, one has a single phonon excitation
with K = 0. For β0 = 0, one recovers expression (18) setting
L = 0.

Regarding the expectation value for the number of
L bosons, it can be calculated as before through the Hellmann-
Feynman theorem [see Eq. (19)]. Note that in the deformed
phase, a contribution proportional to N comes from the mean
field energy. More precisely, one has

〈nL〉gs = N
β2

0

1 + β2
0

+ (1 − x)2 ∂

∂x

(
1

2
(
1 + β2

0

)
(1 − x)

× [ − x + (7x − 8)β2
0 + 2(x − 1)yβ0

× ( − 2 − yβ0 + 2β2
0

)] + �(x, y, β0)1/2

2(1 − x)

)
, (24)

〈nL〉pξ = 〈nL〉gs + p(1 − x)2 ∂

∂x

(
�(x, y, β0)1/2

1 − x

)
, (25)

where we used the same notation as in Eqs. (20) and (21), and
p is the number of excited ξ bosons.

2. The case L = 2

In this section, we will focus on the IBM case, i.e.,
L = 2. For arbitrary L �= 0, the Hamiltonian (11) must be

diagonalized separately for each value of µ. Indeed, one has

H0 = C +
+2∑

µ=−2

Hµ, (26)

where C is a constant and Hµ = H−µ. As can be seen in
Eq. (11), Hµ depends not only on µ but also on the angular
momentum L via the Clebsch-Gordan coefficients α(L)

µ,ν .
We diagonalize separately the modes µ = 0, µ = ±1,

and µ = ±2 which correspond to the β phonon (K = 0),
a Goldstone phonon (K = 1 two-fold degenerate), and the
γ phonon (K = 2 two-fold degenerate), respectively. After
the diagonalization via a Bogoliubov transformation, the full
diagonal Hamiltonian in the deformed phase reads

H = E(x, y, β0) + 1

2(1 + β2
0 )

[
− 5x + (19x − 24)β2

0

+ 12(x − 1)yβ3
0

]
+

+2∑
µ=−2

�µ(x, y, β0)1/2

2

+ nξµ
�1/2

µ (x, y, β0) + O(1/N), (27)

with

�0(x, y, β0)

=
[
x − (3x − 4)β2

0 + 2(x − 1)yβ0
(
2 + yβ0 − β2

0

)][
5x − 4 − (19x − 20)β2

0 + 2(x − 1)yβ0
(
6 + 3yβ0 − 7β2

0 − β4
0

)]
(
1 + β2

0

)2 , (28)

�±1(x, y, β0) =
[
x − (3x − 4)β2

0 + (x − 1)yβ0
(
2 + yβ0 − 2β2

0

)][
5x − 4 − (3x − 4)β2

0 + 2(x − 1)yβ0
(
3 + yβ0 − β2

0

)]
(
1 + β2

0

)2 ,

(29)

�±2(x, y, β0) =
[
x − (3x − 4)β2

0 − 2(x − 1)yβ0
(
2 + yβ0 + β2

0

)][
5x − 4 − (3x − 4)β2

0 + 2(x − 1)yβ0
( − 6 + yβ0 − β2

0

)]
(
1 + β2

0

)2 ,

(30)

where y = −√
2/7χ . For β0 = 0, the symmetry between

modes is restored [�µ(x, y, 0) = �(x)] and one recovers the
expression (18) with L = 2.

For β0 �= 0, the phonon excitations depend on µ.
The excitation for µ = 0 bosons, which corresponds to
β bosons, is the same as in the L = 0 case, namely,
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�0(x, y, β0) = �(x, y, β0). In addition, the excitation energy
for µ = ±1 modes vanishes, since for β0 �= 0, one has
�±1(x, y, β0) ∝ ∂E(x,y,β)

∂β
|β0 = 0. This is in agreement with

the fact that the µ = ±1 excitation corresponds to a rotation
of the ground state, i.e., to a Goldstone phonon. Finally, the
µ = ±2 excitation corresponds to a γ excitation, which is
two-fold degenerate.

For the calculation of the expectation value for the number
of d bosons, we proceed as in the L = 0 case and obtain

〈nL〉gs = N
β2

0

1 + β2
0

+ (1 − x)2 ∂

∂x


 1

2
(
1 + β2

0

)
(1 − x)

× [ − 5x + (19x − 24)β2
0 + 12(x − 1)yβ3

0

]
+

µ=+2∑
µ=−2

�µ(x, y, β0)1/2

2(1 − x)


 (31)

〈nL〉pξµ
= 〈nL〉gs + p(1 − x)2 ∂

∂x

(
�µ(x, y, β0)1/2

1 − x

)
, (32)

where, again, the same notation as in Eqs. (20) and (21) is
used, and p corresponds to the number of ξµ excited bosons
(β or γ bosons in the L = 2 case).

IV. NUMERICAL RESULTS

In this section, we compare the analytical results obtained
in previous sections with numerical calculations. Note that for
clarity only the first 0+ and 2+ states are plotted as members
of the different bands.

A. The case L = 0

In this case, we perform the numerical calculations using
the technique presented in Refs. [33,36]. It allows us to easily
deal with a large number of bosons, up to a few thousands. One
can reach such a number of bosons because of the underlying
O(5) symmetry which allows the use of a seniority scheme
that reduces considerably the dimension of the matrices to be
diagonalized.

In Fig. 2 we compare the analytical with the numerical
excitation energies for a large number of bosons, N = 5000
(all the following calculations for L = 0 are performed for
N = 5000), and χ = −√

7/2. Note that single and two phonon
excitations are equally well described. The left part of the
figure corresponds to the deformed phase; the right part to
the spherical one. In this case, a first-order phase transition
appears, and at the critical point xc = 9/11, the ground state
and the first excited state are degenerated, one corresponding
to the spherical and the other to the deformed ground state.

In Fig. 3 we repeat the same comparison for the case χ = 0.
In this case, a second-order phase transition appears. The
energy of the first excited state becomes zero in the deformed
phase and in the spherical phase at the critical point, xc = 4/5.
At this point, regarding the analytical calculations, the de-
formed β excitation transforms into the spherical one phonon
excitation. However, concerning the numerical results, the 0+

2
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n 
en
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gy

0
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2

0
+

3

1 ph
2 ph

FIG. 2. (Color online) Behavior of one and two phonon excitation
energies, in arbitrary units, for L = 0 as a function of x near the
critical point for χ = −√

7/2. Lines are analytical results; dots,
numerical calculations.

state, identified with the β band in the deformed sector, trans-
forms into the two phonon excitation in the spherical sector.

Note that although in the spherical phase the N0 correction
is independent of χ (y), there is a noticeable difference between
Figs. 2 and 3 because for each x value, only the phase that
corresponds to the lowest mean field energy is plotted. The
spherical phase only becomes the most stable from x > 9/11
on for χ = −√

7/2; while in the case χ = 0, it is from x > 4/5
on. Note also that in the deformed phase for χ = 0, there
appear degenerate doublets of levels because of the extra parity
symmetry in the Hamiltonian in this case. Thus, the β band is
connected to two and three phonon excitation in the spherical
phase, while the ββ band is related to the four and five (not
shown in Fig. 3) phonon excitation in the spherical phase.

For the number of bosons, we compare the analytical
formulas with the numerical results for the case of χ = −√

7/2
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FIG. 3. (Color online) Same as Fig. 2, but for χ = 0. Excited
phonon in the deformed region (x < 4/5) is equivalent to the β

excitation in IBM. The lowest 0+ corresponds to 0+
2 .
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-0.001
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0.001
<

n 0>
/ N
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n 0 >
m

f/ N

Num.
Analyt.

0 0.2 0.4 0.6 0.8 1
x

-0.001

0

Num.
Analyt.

FIG. 4. Variation of (〈nL=0〉gs − 〈nL=0〉mf
gs )/N as a function of x

near the critical point for L = 0. Full line is for analytical and circles
for numerical results. Upper figure corresponds to χ = 0 and lower
to χ = −√

7/2.

and χ = 0 in Fig. 4. In particular, we are interested in the
study of the N0 corrections for the ground state; therefore,
we subtract the mean field contribution, 〈n0〉mf

gs /N , from both
analytical and numerical results. As expected, we observe how
the N0 correction improves the description of 〈n0〉gs, especially
near the critical point.

B. The case L = 2

For L = 2, the numerical calculations have been carried
out with an IBM code [37] which has been modified to allow
calculations up to N = 100 bosons. All numerical calculations
for IBM presented below are performed for N = 100.

For L = 2, the case χ = 0 reduces to the L = 0 situation
already discussed. In particular, the analytical ground state
energy is the same in both cases, although the N0 correction
differs; there exists only one kind of excitation: the β, while the
µ = ±1 and γ excitations become spurious Goldstone bosons.
The β excitation energy is equivalent to Eq. (23). On the exact
diagonalization side, the Hamiltonian (1) can be rewritten in
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gy
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γ
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γγ
βγ
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FIG. 5. (Color online) Excitation energies (analytical), in arbi-
trary units, for one and two phonon states as a function of x for
L = 2 and χ = −√

7/2.
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FIG. 6. (Color online) Excitation energies (analytical and numer-
ical), in arbitrary units, of one and two phonon states as a function of x

for L = 2 and χ = −√
7/2 in the deformed phase. Lines correspond

to analytical, and dots to numerical results. The lowest 0+ state
corresponds to 0+

2 , and the 2+ states are, respectively, 2+
3 (lowest)

and 2+
5 (highest).

terms of the generators of an SU(1,1) algebra [33,36] in the
same way as that in the L = 0 case. Consequently, in this
section we will only consider L = 2 with χ �= 0. Any χ value
can be analyzed, but, as an illustration, here we will present
results for the case χ = −√

7/2 that gives the U(5)-SU(3) leg
in the Casten triangle.

First, we plot the analytical results corresponding to one
and two phonon excitations (Fig. 5). In the deformed phase,
the bosons are β and γ excitations, while in the spherical phase
they are spherical harmonic phonons. At the critical point, the
β and the ββ bands transform into one and two phonon bands,
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FIG. 7. (Color online) Excitation energies (analytical and numer-
ical), in arbitrary units, of one and two phonon states as a function of
x for L = 2 and χ = −√

7/2 in the region around the critical point.
Dots correspond to numerical results. The lowest 0+ state corresponds
to 0+

2 and the lowest 2+ state corresponds to 2+
1 .
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FIG. 8. (Color online) Excitation energies of one and two phonon
states, in arbitrary units, as a function of x for L = 2 and χ = −√

7/2.
Lines correspond to analytical and dots to numerical results.

respectively. However, the γ, βγ , and γ γ bands apparently
disappear when entering the spherical phase. Indeed, that
disappearance happens because β and γ excitations become
degenerate for β = 0. The spherical phonon excitation is a five
degenerate excitation where the deformed β and γ excitations
collapse together with the Goldstone boson with projection
±1 (which is at zero energy in the deformed phase).

In order to compare analytical and numerical results, we
will split the analysis into three different regions: deformed
phase (Fig. 6), critical region (Fig. 7), and spherical phase
(Fig. 8). The harmonic character of the results is observed in
all these plots.

1. Deformed phase

In the deformed phase (Fig. 6), one and two phonon
excitations are clearly separated in energy. Note that the exci-
tation energy for the γ band is higher than the corresponding
one for the β band, although for x = 0 [SU(3) limit] they
are degenerated. Also note that the γ γ excitation carries
the angular momentum projections K = 0,±4, which in this
approach are degenerated.

The correspondence between numerical and analytical
states is as follows: the β band is identified with 0+

2 , γ with
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FIG. 9. (Color online) 〈nd〉/N as a function of x for L = 2 and
χ = −√

7/2, in the deformed phase for one phonon states. Lines
correspond to analytical and dots to numerical results.
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FIG. 10. (Color online) Excitation energies (numerical) of 2+
3 and

2+
4 states at the region of closest approach (see text) for L = 2 and

χ = −√
7/2.

2+
3 , ββ with 0+

3 , βγ with 2+
5 , and γ γ with 0+

4 . Note that the
state 2+

2 belongs to the β band, while 2+
4 is with the ββ band.

The overall agreement between analytical and numerical
results is satisfactory and improves the description given in
Ref. [31] for single and double phonon excitations, although
in the present approach, no mixing appears among the different
kinds of excitations.

The average number of d bosons in the deformed phase,
normalized to the total number of bosons, is depicted in
Fig. 9 for one phonon states (the results for two phonon states
are not presented for clarity). It can be observed that a smooth
decrease of 〈nd〉 occurs when x increases, as is expected when
approaching the spherical phase.

2. Critical area

The comparison around the critical area (Fig. 7) becomes
complicated because one and two phonon states have compa-
rable energies and there appears an interchange of character
between states. For example, at the critical point, the ββ is at
lower energy than the γ excitation.

Starting at x = 0.75, the correspondence between analyt-
ical and numerical states is similar to the one given in the
preceding section; but already at x = 0.8, different states
interchange their character. The correspondence between
states is presented in Table I. Clearly, an interchange of char-

TABLE I. Correspondence between analytical and numerical
states for three values of x: x = 0.75 deformed phase, x = 9/11
critical point, and x = 0.85 spherical phase. Only 0+ and 2+ states
are indicated explicitly.

x = 0.75 x = 9/11 x = 0.85

β 0+
2 , 2+

2 0+
2 , 2+

2

γ 2+
3 2+

4

ββ 0+
3 , 2+

4 0+
3 , 2+

3

βγ 2+
5 2+

6

γ γ 0+
5 0+

7

1 phonon 2+
1

2 phonons 0+
2 , 2+

2
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FIG. 11. (Color online) 〈nd〉/N (numerical) of 2+
3 and 2+

4 states at
the region of closest approach (see text) for L = 2 and χ = −√

7/2.

acter exists among the states corresponding to the γ, ββ, βγ ,
and γ γ bands.

An interesting question that arises is whether the inter-
change of character is due either to level crossing or to level
repulsion. We have to take into account that the transition
between SU(3) and U(5) is not an integrable path [12]; i.e., a
complete set of mutually commuting Hermitian operators does
not exist. This implies that crossings are forbidden and only
repulsion is allowed. In particular, in the thermodynamic limit,
the repulsion becomes anticrossing, i.e., infinite repulsion.
In Fig. 10, we show a closeup of one apparent crossing in
Fig. 7 between 2+ states in the region around x = 0.796; it is
clearly seen that the levels indeed repel each other as expected.
To illustrate this result and show how the two involved
levels interchange their character, we present in Fig. 11
the expectation value of the d boson number in both states. It
is clearly observed that the states interchange their properties
at the point of closest approach.

The average number of d bosons, normalized to the total
number of bosons, in the region around the critical point
is depicted in Fig. 12 for the ground state (left panel) and
for the β band (right panel). One important feature is the
discontinuity appearing at xc = 9/11 due to the existence
of a first-order phase transition. In the evolution of the β

band, a kink appears in the numerical results at the critical
point. This behavior at the critical point has been already
observed for other observables such as isomer shifts [1],
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FIG. 12. (Color online) 〈nd〉/N as a function of x, for L = 2
and χ = −√

7/2, at the critical area for one phonon states. Lines
correspond to analytical and dots to numerical results.
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FIG. 13. (Color online) 〈nd〉/N as a function of x for L = 2 and
χ = −√

7/2, in the spherical phase for one and two phonon states.
Lines correspond to analytical and dots to numerical results.

derivatives of the ratios of 4+
1 /2+

1 excitation energies [38], or
B(E2; 4+

1 → 2+
1 )/B(E2; 2+

1 → 0+
1 ) [15]. Also note that the

0+
2 state transforms into a two phonon band when passing to

the spherical phase.

3. Spherical phase

The last region of interest is the spherical phase (Fig. 8).
Here, there exists a five degenerated phonon excitation. The
correspondence between the analytical and the numerical
results is clear: one phonon excitation corresponds to the state
2+

1 ; two phonon excitation to the state 0+
2 (also to 2+

2 and 4+
1

states).
The average number of d bosons, normalized to the total

number of bosons, in the spherical region is depicted in
Fig. 13 for the one and two phonon states. The main
discrepancies between numerical and analytical results, as
expected, appear close to the critical point. Note that the
structure of the states is very simple and that already for
x = 0.9, the number of d bosons is fixed to 1 and 2 for one
and two phonon states, respectively.

V. SUMMARY AND CONCLUSIONS

In this paper, we have studied two-level boson models
characterized by a lowest scalar s boson and an excited L boson
through a Holstein-Primakoff transformation that allows us to
treat explicitly order by order an N expansion. This treatment
shows that only the leading N term of the ground state energy
is correct in a mean field (or Hartree-Bose) approach. We stress
that the equilibrium nuclear shape corresponding to an IBM
Hamiltonian should be obtained only when considering the
leading N term of the ground state energy.

Depending on the value of L, models of interest in different
fields can be obtained. Thus, L = 0 is related to the Lipkin
model first introduced in nuclear physics and then used in
many fields, L = 1 is the vibron model of interest in molecular
physics, L = 2 is the interacting boson model of nuclear
structure, etc. We have presented a method for going accurately
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beyond the standard mean field treatment so as to be able
to compute finite size corrections to several spectroscopic
observables. The model Hamiltonian used is a generalization
for arbitrary L of the consistent Q Hamiltonian in the IBM.
This Hamiltonian depends on two control parameters, and
changes in them allow us to explore the full model space and
the corresponding phase diagram. Although the formalism
is general for any L value, we have concentrated on the
cases L = 2 (IBM) and L = 0. Both spherical and deformed
phases have been studied with special emphasis on the gap
for single and double excitations and the expectation values

of the number of L bosons in different states. Analytical
results have been validated by comparison with full numerical
calculations.
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