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Abstract. The role of core excitation in the structure and dynamics of two-body halo nuclei is
investigated. We present calculations for the resonant breakup of 11Be on protons at an incident
energy of 63.7 MeV/nucleon, where core excitation effects were shown to be important. To describe
the reaction, we use a recently developed extension of the DWBA formalism which incorporates
these core excitation effects within the no-recoil approximation. The validity of the no-recoil
approximation is also examined by comparing with DWBA calculations which take into account
core recoil. In addition, calculations with two different continuum representations are presented and
compared.
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INTRODUCTION

Reactions induced by halo nuclei have been described during the past 25 years using a
variety of reaction formalisms, such as the Continuum–Discretized Coupled–Channels
(CDCC) method [1], the adiabatic (frozen-halo) approximation [2, 3, 4], several semi-
classical approaches [5, 6, 7] and, more recently, the Faddeev equations [8, 9].

In their standard formulations, these methods are typically based on a simple mean-
field description of the halo nucleus in which the excitation (or breakup) of this nucleus
is modeled as a single-particle excitation of the valence particle, with the core remaining
in its ground state. This simplified picture ignores the presence of core admixtures in
the states, as well as possible transitions between these core states during the collision.
These core excitation (CEX hereafter) effects are however expected to be important in
halo nuclei with a well deformed core, such as 11Be or 19C.

At intermediate energies, the effect of CEX in inelastic and breakup reactions can
be studied in the DWBA formalism. In this scheme, the non-central part of the core-
target interaction, which is responsible for the dynamic CEX mechanism, gives rise to an
additional term in the transition amplitude [10]. Furthermore, in situations in which the
core is much heavier than the valence particle, this additional term acquires a very simple
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and transparent form [11]. The model was applied to the scattering of 11Be on protons
and revealed that CEX plays a very significant role in the dynamics of the reaction,
affecting the magnitude and shape of the breakup angular distributions.

In this contribution, we revisit the CEX model and explore in more detail its limits of
validity. For this purpose, we compare two different discretization methods to describe
the continuum of the halo nucleus, namely, a binning method and a pseudostate method.
Also, we present additional DWBA calculations performed without making use of the
no-recoil approximation, which show that this approximation is very well fulfilled in the
kinematical conditions considered in the calculations of Refs. [10, 11].

STRUCTURE OF THE HALO NUCLEUS IN THE
PARTICLE-CORE MODEL

The halo structure is treated in the particle-rotor model, in terms of the Hamiltonian

Hproj = Tr +Vvc(�r,�ξ )+hcore(�ξ ), (1)

where�r is the relative coordinate between the valence and the core, �ξ denote the internal
degrees of freedom of the core, Tr the core-valence kinetic energy operator, Vvc the
valence-core interaction and hcore(�ξ ) the intrinsic Hamiltonian of the core.

The bound and unbound states of the system are represented by the eigenstates of the
Hamiltonian (1) for negative (ε < 0) and positive (ε > 0) eigenvalues. In both cases, the
dependence on�ξ in Vvc gives rise to core admixtures in the projectile states. For example,
for a bound state with total angular momentum J and projection M, the projectile wave
function can be expressed as

ΨJM(�r,�ξ ) = ∑
α

[
ϕJ

α(�r)⊗ΦI(�ξ )
]

JM
, (2)

where the label α denotes the set of quantum numbers {�,s, j, I}, with I and s the core
and valence intrinsic spins, � the orbital angular momentum, and �j =��+�s. The functions
ΦI(�ξ ) and ϕJ

α(�r) describe, respectively, the core states and the valence–core relative
motion.

The radial parts of the functions ϕJ
α(�r), denoted hereafter RJ

α(r), can be obtained
in different ways. In the calculations presented in Refs. [10, 11], these functions were
obtained by direct integration of the Schrödinger equation subject to the appropriate
boundary conditions, for bound or unbound states. Continuum states were grouped
into energy intervals, using the standard average binning method [1]. Alternatively, the
projectile Hamiltonian can be represented by the eigenstates of the Hamiltonian in a
truncated basis of square-integrable functions (generically referred to as pseudostates).
For positive-energy states (ε > 0), the eigenvalues obtained in the pseudostate method,
and their corresponding eigenstates, should be regarded as a discrete representation of
the continuum spectrum.

In this contribution, we compare the calculated resonant breakup observables using
the binning and the pseudostates methods. A related work was done in Ref. [12] but in
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that case the projectile consisted on a three-body Borromean nucleus. As pseudostates
we use the Transformed Harmonic Oscillator (THO) basis used in Ref. [13]. This
basis is obtained by applying an analytic local scale transformation (LST) [14] to the
conventional harmonic oscillator basis such that it transforms the asymptotic Gaussian
behaviour of the HO functions into an exponential.

In this manuscript our working example is the 11Be nucleus, described in terms of
the hamiltonian of Ref. [15] which assumes that the 10Be core has a permanent axial
deformation with β2 = 0.67. This model reproduces the separation energy for the ground
state (1/2+; ε =−500 keV) and the 1/2− excited state (ε =−180 keV). In addition, it
produces narrow resonances at ε = 1.2 (5/2+), 2.7 (3/2−) and 3.2 MeV (3/2+), which
can be identified with the states observed by Fukuda et al. [16] in the 11Be+12C reaction
at 70 MeV/nucleon.

In Fig. 1 we show the wavefunctions for the ground state, and the 5/2+ and 3/2+ res-
onances, which are the most relevant for the reaction calculations presented below. The
solid lines are the exact calculations, obtained by direct integration of the Schrödinger
equation, whereas the dashed lines correspond to a pseudostate calculation, using the
THO basis. Resonant states are identified with stabilized energies with respect to the
basis size (N), as explained in [13]. The dominant configuration in the ground state and
the 5/2+ resonance correspond to the core in the ground state, whereas the 3/2+ res-
onance has a dominant 10Be(2+)⊗νs1/2 parentage. It is apparent from Fig. 1 that, for
the ground-state, the pseudostate representation is almost identical to the exact solution.
For the resonances, the radial wavefunctions are very similar in the interior part, but they
necessarily differ at large distances, due to the exponential asymptotic behaviour of the
THO functions. In the next section, we explore the effect of the differences between the
radial wavefunctions on the calculated breakup observables.
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FIGURE 1. (Colour online) Radial parts of the ground state wave function for the 11Be nucleus and the
5/2+1 and 3/2+1 resonances obtained by direct integration of the Schrödinger equation (solid lines) and by
diagonalization in a THO basis (dashed lines).

A DWBA MODEL FOR CORE EXCITATION

We consider the excitation (or breakup) of the halo nucleus resulting from its collision
with a target nucleus that, for simplicity, will be considered as inert. Core excitation
affects the reaction dynamics in two ways. Firstly, the presence of core admixtures in
the states of the projectile means that these states cannot be simply treated as single-
particle states calculated in some mean field potential. Secondly, the interaction of the
core with the target may give rise to transitions between these core states, leading also
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to the breakup of the projectile. As shown below, the standard DWBA method can be
naturally extended to accommodate these two effects.

This breakup process is described in terms of the three-body Hamiltonian

H = TR +Hproj +Vct(�Rct ,�ξ )+Vvt(�Rvt) , (3)

where TR represents the kinetic energy operator for the projectile–target relative motion,
Vct and Vvt are in the core–target and the valence–target interactions and Hproj is the
projectile Hamiltonian introduced in the previous section.

Using the Hamiltonian (3), the DWBA transition amplitude for the transition between
the states Ψi and Ψ f is given by

T JM,J′M′
pt = 〈χ(−)

�K′
(�R)Ψ f

J′M′(�r,�ξ )|Vvt(�Rvt)+Vct(�Rct ,�ξ )|χ(+)
�K

(�R)Ψi
JM(�r,�ξ )〉, (4)

where χ(+)
�K

(�R) and χ(−)
�K′

(�R) are distorted waves describing the projectile-target relative
motion in the initial and final channels, respectively.

Although the expression (4) could be evaluated directly, without further approxima-
tions, in [10, 11] we have proposed a simple way of evaluating this expression which
makes use of a multipole expansion of the core-target interaction:

Vct(�Rct ,�ξ ) = ∑
λ ,μ

V
(λ )
ct (Rct ,ξ )Y ∗λ μ(R̂)Yλ μ(ξ̂ ). (5)

Replacing this expansion in the DWBA amplitude, Eq. (4), and separating the central
(λ = 0) from the non-central (λ > 0) parts gives rise to two terms,

T JM,J′M′
pt (�K′, �K) = T JM,J′M′

val +T JM,J′M′
corex . (6)

The first term, that we denote valence amplitude for shortness, is explicitly given by

T JM,J′M′
val (�K′, �K) = ∑

α ,α ′
〈χ(−)

�K′
(�R)ψJ′

α ′(�r)|Vvt(Rvt)+V
(0)
ct (Rct)|χ(+)

�K
(�R)ψJ

α(�r)〉δI,I′ , (7)

where we have written the initial and final states in the form of Eq. (2). This amplitude
contains only the central part of Vct and, therefore, it cannot induce transitions involving
excitations of the core.

The second term (core excitation amplitude) acquires a particularly simple form when
evaluated in the no-recoil approximation [11],

T JM,J′M′
corex = ∑

λ>0,μ
〈J′M′|JMλ μ〉 ∑

α,α ′
〈RJ′

α ′ |RJ
α〉G(λ )

αJ,α ′J′T̃
(λ μ)

ct (I → I′), (8)

where G
(λ )
αJ,α ′J′ is a geometric factor [10, 11] and T̃

(λ μ)
ct is related to the core-target

two-body transition amplitude for a core transition IMc → I′M′
c of multipolarity λ as

T
IMc,I

′M′
c

ct = 〈IMcλ μ |I′M′
c〉T̃ (λ μ)

ct . This approximation is expected to be valid when the
mass of the core is much larger than that of the valence particle.
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APPLICATION TO 11BE BREAKUP

Now we apply the DWBA model, extended to include CEX, to the breakup of 11Be on
protons at 63.7 MeV/nucleon. This reaction has been already analysed in [10, 11] using
this framework and a binning description of the 11Be continuum. The calculated angu-
lar distributions, integrated in the relative energy intervals ε=0–2.5 MeV and ε=2.5–
5.0 MeV, were found to describe reasonably well the data of Ref. [17]. Furthermore, it
was shown that the core excitation mechanism gives a sizable contribution to the breakup
cross section, particularly in the second energy interval, which contains the 3/2+ reso-
nance.

In this contribution we present further calculations for this reaction. We adopt the
same structure model and fragment-target potentials used in [11] so we refer the reader
to this reference for further details. Here, we focus on the excitation of the 1.78 MeV
(5/2+) and 3.41 MeV (3/2+) resonances.

In Fig. 2 we display the calculated breakup angular distributions as a function of the
center-of-mass scattering angle. The left and right panels correspond, respectively, to the
5/2+ and 3/2+ resonances. The dashed and solid lines use the no-recoil approximation
for the CEX amplitude, Eq. (8). For the dashed lines, the 11Be wavefunctions were
obtained by direct integration of the Schrödinger equation and the resonance region
was represented by a continuum bin spanning the intervals ε = 0.8− 1.4 MeV and
ε = 2.5−3.5 MeV for the 5/2+ and 3/2+ resonances, respectively. On the other hand,
in the calculations represented by the solid lines, the 11Be states were represented by
eigenstates of the 11Be Hamiltonian in the THO pseudostate basis. It is seen that the
two basis representations provide almost identical results. This result indicates that this
observable is mostly sensitive to the interior part of the projectile wavefunctions. For the
CEX amplitude, this independence of the asymptotic behaviour can be readily inferred
from Eq. (8) since the overlap between the radial parts of the continuum wavefunctions
and the ground-state wavefunction will suppress the contribution of the asymptotic part
of the former.

For each basis representation, we show in Fig. 2 the separate contributions arising
from the valence [Eq. (7)] and the CEX amplitude [Eq. (8)], as well as their coherent
sum [Eq. (6)]. It is seen that the core excitation mechanism is very important in both
cases, particularly for the 3/2+ state, due to the dominance of the 10Be(2+)⊗ νs1/2
configuration in this state.

We have also assessed the validity of the no-recoil approximation used to derive
Eq. (8). For this purpose, we have performed additional calculations evaluating directly
Eq. (4), without further approximations. The pseudostate representation was chosen to
represent the 11Be states. The results, shown in Fig. (2) by open circles, are found to be
very close to the no-recoil calculations. This justifies the use of this approximation for
this reaction, and supports the calculations presented in Ref. [11].

SUMMARY AND CONCLUSIONS

In summary, we have investigated the effect of core excitation (CEX) in the breakup of
halo nuclei, within the framework of the DWBA method. Within this formalism, the non-
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FIGURE 2. (Color online) Angular distribution for the breakup of 11Be on protons at 63.7
MeV/nucleon. The left and right panels correspond, respectively, to the 5/2+ (Ex = 1.78 MeV) and the
3/2+ (Ex = 3.41 MeV) resonances. Solid and dashed lines correspond to the DWBA calculations using
the no-recoil model, representing the resonances by a continuum bin (dashed) or by a pseudostate (solid).
The separate contributions coming from the valence and core amplitudes are also shown. The open circles
correspond to the DWBA calculation taking into account recoil effects.

central part of the core-target potential gives rise to an additional term in the transition
amplitude, which accounts for the dynamic CEX mechanism. This extra term acquires a
particularly simple form when evaluated in the no-recoil approximation.

The model has been applied to the resonant breakup of 11Be on protons at an incident
energy of 63.7 MeV/nucleon. We find that the CEX mechanism is very important in both
cases, affecting the magnitude and shape of the breakup angular distributions.

We have compared two different representations for the 11Be continuum, a binning
method and a pseudostate method. Both representations are found to give very similar
results for the breakup cross sections.

We have also tested the validity of the no-recoil approximation used to evaluate the
CEX amplitude. For this purpose, we have performed calculations evaluating directly the
DWBA amplitude, Eq. (4). The results are very close to those obtained in the no-recoil
approximation, thus justifying the use of this approximation in the present case.

We note that all calculations presented in this work rely on the Born approximation,
and hence higher order couplings (such as continuum-continuum couplings) are ignored.
These higher-order couplings could be included in the coupled-channels framework,
as described in [18]. These kind of calculations are in progress and will be presented
elsewhere.

From the calculations presented in this work, we may conclude that these core-
excitation effects might be also important in other reactions induced by weakly-bound
projectiles with deformed constituents. The DWBA method used here can provide a
useful and simple estimate of these effects in those situations in which the assumptions
of the model (i.e., the validity of the Born approximation and the possibility of neglecting
core-recoil) are justified.
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