
The Ciao CLP(^X>) Library
A Modular CLP Extension for Prolog

(System Description)

Emilio Jesus Gallego Arias1 , Remy Haemmerle1 ,
Manuel V. Hermenegildo1 '2 , and Jose F . Morales2

1 Universidad Politecnica de Madrid
2 IMDEA Software Institute

Abs t r ac t . We present a new free library for Constraint Logic Program­
ming over Finite Domains, included with the Ciao Prolog system. The
library is entirely written in Prolog, leveraging on Ciao's module system
and code transformation capabilities in order to achieve a highly modu­
lar design without compromising performance. We describe the interface,
implementation, and design rationale of each modular component. The
library meets several design goals: a high level of modularity, allowing
the individual components to be replaced by different versions; high-
efficiency, being competitive with other TT> implementations; a glass-box
approach, so the user can specify new constraints at different levels; and
a Prolog implementation, in order to ease the integration with Ciao's
code analysis components. The core is built upon two small libraries
which implement integer ranges and closures. On top of that, a finite do­
main variable datatype is defined, taking care of constraint reexecution
depending on range changes. These three libraries form what we call the
TT> kernel of the library. This TT> kernel is used in turn to implement
several higher-level finite domain constraints, specified using indexicals.
Together with a labeling module this layer forms what we name the TT>
solver. A final level integrates the CLP (J7©) paradigm with our TT>
solver. This is achieved using attributed variables and a compiler from
the CLP (J7©) language to the set of constraints provided by the solver.
It should be noted that the user of the library is encouraged to work in
any of those levels as seen convenient: from writing a new range module
to enriching the set of TT> constraints by writing new indexicals.

1 I n t r o d u c t i o n

Constraint Logic Programming (CLP) [1] is a natural and well understood ex­
tension of Logic Programming (LP) in which term unification is replaced by
constraint solving over a specific domain. This brings a number of theoretical
and practical advantages which include increased expressive power and declar-
ativeness, as well as higher performance for certain application domains. The
resulting CLP languages allow applying efficient, incremental constraint solv­
ing techniques to a variety of problems in a very natural way: constraint solving

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148663590?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

blends in elegantly with the search facilities and the ability to represent partially
determined data that are inherent to logic programming. As a result, many mod­
ern Prolog systems offer different constraint solving capabilities.

One of the most successful instances of CLP is the class of constraint logic
languages using Finite Domains {TV). Finite domains refer to those constraint
systems in which constraint variables can take values out of a finite set, typically
of integers (i.e., a range). They are very useful in a wide variety of problems,
and thus many Prolog systems offering constraint solving capabilities include a
finite domain solver. In such systems, domain (range) definition constraints as
well as integer arithmetic and comparison constraints are provided in order to
specify problems.

Since the seminal paper of Van Hentenryck et al. [2], many FD solvers adopt
the so-called "glass-box" approach. Our FD Kernel also follows this approach,
based on a unique primitive called an indexical. High-level constraints are then
built/defined in terms of primitive constraints. An indexical has the form X in r,
where r is a range expression (defined in ??). Intuitively, X in r constrains the
TV term {TV variable or integer) X to belong to the range denoted by the term
r. In the definition of the range special expressions are allowed. In particular,
the expressions max(Y) and max(Y) evaluate to the minimum and the maximum
of the range of the TV variable Y, and the expression dom(Y) evaluates to the
current domain of Y. Constrains are solved partially in an incremental using con­
sistency techniques [3] which maintain the constraint network in some coherent
state (depending on the arc-consistency algorithm used). This is done by mono­
tone domain shrinking and propagation. When all constraints are placed and all
values have been propagated a call is typically made to a labeling predicate which
performs an enumeration-based search for sets of compatible instantiations for
each of the variables that remain not bound to a single value. We refer to [2] for
more details regarding indexicals and finite domain constraint solving.

In this paper, we present a new free library for Constraint Logic Program­
ming over Finite Domains, included with the Ciao Prolog system [4]. The li­
brary is entirely written in Prolog, leveraging on Ciao's module system and code
transformation capabilities in order to achieve a highly modular design with­
out compromising performance. We describe the interface, implementation, and
design rationale of each modular component. The library meets several design
goals: a high level of modularity, allowing the individual components to be re­
placed by different versions; high-efficiency, being competitive with other TV
implementations; a glass-box approach, so the user can specify new constraints
at different levels; and a Prolog implementation, in order to ease the integration
with Ciao's code analysis components. The core is built upon two small libraries
which implement integer ranges and closures. On top of that, a finite domain
variable datatype is defined, taking care of constraint reexecution depending
on range changes. These three libraries form what we call the TV kernel of
the library. This TV kernel is used in turn to implement several higher-level
finite domain constraints, specified using indexicals. Together with a labeling
module this layer forms what we name the TV solver. A final level integrates

the CLP(.FD) paradigm with our TV solver. This is achieved using attributed
variables and a compiler from the CLP(.FD) language to the set of constraints
provided by the solver. It should be noted that the user of the library is encour­
aged to work in any of those levels as seen convenient: from writing a new range
module to enriching the set of TV constraints by writing new indexicals.

One of the first CLP(JrI?) implementations is the CHIP system [5]. This
commercial system follows a typical black-box approach: it consists of a complete
solver written in C and interfaces in an opaque manner to a Prolog engine. This
makes it difficult for the programmer to understand what is happening in the core
of the system. Also, no facilities are provided for tweaking the solver algorithms
for a specific application.

More recent CLP(.FD) systems such as those in SICStus [6], GNU Pro­
log [7,8], and B-Prolog [9] are built instead following more the glass-box ap­
proach. The basic constraints are decomposed into smaller but highly optimized
primitives (typically indexicals). Consequently, the programmer has more lati­
tude to extend the constraints as needed. However, even if such systems can be
easily modified/extended at the interface level (e.g., both SICStus and B-Prolog
provide way to define new global constraints) they are much harder to modify at
the implementation level (e.g., it is not possible to replace the implementation
of range).

The Ciao CLP(.FD) library that we present has more similarities with the
one recently developed for SWI Prolog [10]. Both are fully written in Prolog and
support unbound ranges. The SWI library is clearly more complete than Ciao's
(e.g., it provides some global constraints and always terminating propagation),
but it is designed in a monolithic way: it is implemented in a single file, mixing
different language extensions (using classical Prolog term_expansion mecha­
nisms) while the Ciao library is split in more around 20 modules with a clear
separation of the different language extensions [11].

Summarizing, our library differs in a number of ways from other existing
approaches:

— First, along with more recent libraries it differs from early systems in that it is
written entirely in Prolog. This dispenses with the need for a foreign interface
and opens up more opportunities for automatic program transformation and
analysis. The use of the meta-predicates setarg/3 and c a l l / 1 means that
the use of Prolog has a minimal impact on performance.

— Second, the library is designed as a set of separate modules. This allows
replacing a performance-critical part — like the range code — with a new
implementation better suited for it.

— Third, the library supports the "glass-box" approach fully, encouraging the
user to access directly the low-level layers for performance-critical code with­
out losing the convenience of the high-level CLP paradigm. Again, the fact
that the implementation is fully in Prolog is the main enabler of this feature.

— Lastly, we have prioritized extensibility, ease of modification, and flexibility,
rather than micro-optimizations and pure raw speed. However, we argue that

our design will accommodate several key optimizations like the ones of [12]
without needing to extend the underlying WAM.

The rest of the paper proceeds as follows. In Sec. 2 we present the architecture
of the library and the interface of the modules. In Sec. 3 we discuss with an
example how to use the glass box approach at different levels for better efficiency
in a particular problem, with preliminary benchmarks illustrating the gains.
Finally, in Sec. 4 we conclude and discuss related and future work.

2 Architecture of the Ciao CLP(FT>) Library

The Ciao CLP(.FD) library consists of seven modules grouped into three log­
ical layers plus two specialized Prolog to Prolog translators. In the definition
of these modules and interfaces we profit from Ciao's module system [13] and
Ciao's support for assertions [14,4], so that every predicate is correctly annotated
with its types and other relevant interface-related characteristics, as well as doc­
umentation. The translators are built using the Ciao packages mechanism [13],
which provides integrated and modular support for syntax modification and code
transformations. A description of the user interface for the library along with
up-to-date documentation may be found in the relevant part of the Ciao manual.

2.1 The Global Architecture

The global architecture is illustrated in Fig. 1. The kernel layer provides facili­
ties for range handling and propagation chains, which are used for defining finite
domain variables — which, as mentioned before, are different from the stan­
dard logical variables. The TV layer defines a finite set of constraints such as
a+b=c/3, using indexicals. These constraints are translated form their indexical
form to a set of instructions of the kernel layer. Labeling and branch-and-bound
optimization search modules complete the finite domain solver.

The CLP(.FD) constraints are translated to TV constraints by a CLP(.FD)
compiler. We use attributed variables to attach a finite domain variable to every
logical variable involved in CLP(.FD) constraints. Thus, the CLP(.FD) layer is
thin and of very low overhead.

2.2 The Finite Domain Kernel

The finite domain kernel is the most important part of the library. Its imple­
mentation freely follows the design of the GNU Prolog TV solver ([8] provides a
general overview of this solver). A finite domain variable is composed of a range
and several propagation chains. When the submission of a constraint modifies
the range of a finite domain variable, other finite domain variables depending
on that range are updated by firing up constraints stored in propagation chains.
The propagation events are executed in a synchronous way, meaning that a range
change will fail if any of its dependent constraints cannot be satisfied.

CLP(.F:D) CLP (J7©) Run Time

I CLP (TV) Compiler

TV Kernel
B&B Optimization

TV Term

Labelin

Propagators Range

TV Constraints
Idx Compiler

TV Solver

Fig. 1. The Ciao CLP (J7©) Library Architecture.

The kernel implements arithmetic over ranges (pointwise operations, union,
intersection complementation, ...) and management of propagation chains, amount­
ing to the delay of Prolog goals on arbitrary events. These two elements are used
to implement the two basic operations of a finite domain variable: t e l l and
prune. The first one a t tempts to constrain a variable into a particular range,
while the second one (prune/2) removes a value form the range of a variable.
The variable code inspects the new and old ranges and wakes up the suspended
goals on a given variable.

All the data structures are coded in an object-oriented style. Efficient access
and in-place update are implemented by using the s e t a r g / 3 primitive. We took
special care to use s e t a r g / 3 in a safe way to avoid undesired side effects, such
as those described by Tarau [15].

R a n g e s . Range handling is one of the most important par ts of the library, given
the high frequency of range operations. Indeed, the library supports three imple­
mentations for ranges: the s tandard one using lists of closed integer intervals; an
implementation using lists of open (i.e., unbounded) intervals; and a bit-based
implementation which despite allowing unbound ranges is more suitable for prob­
lems dealing with small ranges.3 Indeed, the user is encouraged to implement
new range modules which are bet ter suited to some particular problems.

The implementation of the bit-based range uses arbitrary precision integers plus
three non-ISO predicates for computing the least and most significative bits, and
the number of active bits in such integers. We implemented these predicates in C.

t . . t
{ t }
r \ / r
r A r
- r
r + n
r - n
r * n

min(Y)
max(Y)
dom(Y)
va l (Y)
t + t t - t t * t .
n

(interval)
(singleton)
(union)
(intersection)
(complementat ion)
(pointwise addit ion)
(pointwise subtrac t ion)
(pointwise multiplication)

(minimum)
(maximum)
(domain)
(value)
(ar i thmetic expression)
(bound)

Fig. 2. Range Interface, Part 1: Syntax.

The interface tha t a range module must implement is split into two parts .
The first one, shown in Fig. 2, deals with range creation and manipulation.
Each of the operations defined in the figure has a corresponding predicate. For
instance, bounds addition t + t is implemented by the predicate bound_add/3 ,
and similarly for the rest of the predicates. Note tha t it is a convention of the
interface tha t any operation tha t tries to create an empty range will fail. This is
bet ter for efficiency and we found no practical example yet where this would be
inconvenient.

Fig. 3 lists the rest of the predicates tha t a range implementation must
provide. They are mainly used for obtaining information about a range and
are instrumental for the labeling algorithms.

P r o p a g a t i o n Chains . Propagation chains are just lists of goals meant to be
executed when a change in the range of a TV variable happens. The module
defines a propagation chain structure tha t is simply a named set of chains. We
support in-place update for the structure, thus allowing efficient update of the
propagation chains used in the finite domain variables. The interface of the

fd_range_bound_t/1

fd_range_t/l

is_singleton/1

s inglet on_t o_bound/2

size/2

get_domain/2

enum/2

bound_const/2

Type of a range bound.
Type of a range object.
True if range is a singleton.
Returns the value of a singleton range.
Number of elements in a range.
List of elements in a range.
Backtracks throughout all the elements in a range.
Correspondence of indexical constants with bounds.

Fig. 3. Range Interface, Part 2: Predicates.

fd_pchains_t/l Type of a chain structure.
fd_pchain_type_t/l Name of a chain,
empty/1 Returns an empty chain structure.
add/3 Adds a goal to a given chain.
execute/2 Wakes up a particular chain.

Fig. 4. Propagation Chain Interface.

propagation chain module is presented in Fig. 4. We use internal facilities of the
Ciao module system in order to efficiently implement execute/2.

Finite Domain Variables. An TV variable is a structure consisting of a range
and a propagation chain.

In the current implementation, integers are considered to be finite domain
variables too. However, we are in the process of phasing out this optimization
as we incorporate more information into finite domain variables to aid optimiza­
tions.

TV variables are never unified, i.e., they cannot be substituted by others or
by integer values as is typically done by the Prolog unification mechanism. A
priori, such variables have no correspondence to Prolog logical variables.

Apart from accessing its range and propagation chain, the most important
operations that a finite domain variable supports is the tell operation, which
tries to update the TV variable to a new range:

1 tell_range(FdVar, TellRange):-

2 fd_var:get_range(FdVar, VarRange),

3 fd_range:intersect(VarRange, TellRange, NewRange),
4 set_range_and_propagate(FdVar, VarRange, NewRange)

The propagation predicate will set the new range for the variable and compare
the new range with the old one. The current definition — following [12] — sup­
ports four propagation events, depending on the range change:

dom: The range changed.
max: The maximum of the range has changed.
min: The minimum of the range has changed.
val: The new range is a singleton.

2.3 The Finite Domain Solver

Once the finite domain kernel is in place, the finite domain solver is just the
labeling algorithm and a set of constraints defined using the kernel. As mentioned
before, the constraints are defined using indexicals, of the form X in Range. Such
indexicals are compiled to programs of the TV kernel in a transparent way for the
user. The compilation is carried out by Ciao's source-to-source transformation
capabilities, which means that an input Prolog file using the indexicals package

is processed in such a way that predicates containing indexical definitions are
replaced by their compiled form.

The indexical syntax is intended to be compatible with syntax used in SIC-
Stus and GNU Prolog. However, the use of Ciao's package system means that
the user may freely mix indexicals with Prolog code (or with many other syntax
extensions, such as, e.g., functional notation) without any ill effect, as seen in
Appendix A.

The Constraints Library. A reasonable set of local constraints is provided,
covering most examples that we have tried to date. We use the convention of
using t for ground terms, such that in the constraint 'a+b<>c'/3, all three
arguments are assumed to be TV variables, whereas in the constraint named
a+t<>c/3, the second argument is assumed to be an immutable singleton, and
thus no propagation chains will be installed on it.

Labeling and Optimization Searches, This layer includes also typical label­
ing algorithms and branch and bound optimization searches. In fact, the current
labeling engine is a slight adaptation of the one in the SWI CLP(JrI?) library: we
opted for replacing the preliminary version of the engine with this one from SWI,
because of its many useful features and easy adaptability to our library.4 The
porting task was relatively easy because the labeling engine is a quite peripheral
part of the library (i.e., it has very few code dependencies). It also underlines
the high modularity of our library, since two versions of the labeling are in fact
available 5. Finally we obtained for free a common user interface with SWI (and
Yap).

The optimization searches uses a branch-and-bound algorithm with restart
to find a value that minimizes (or maximizes) the TV variable according the
execution of a Prolog goal. It offers a user-interface similar to the one provided
by GNU Prolog.

2.4 CLP(:FX>)

With the TV solver in place, supporting the CLP(JrI?) paradigm is a matter of
performing two mappings: logical variables must be put in correspondence with
TV variables and CLP(JrI?) constraints must be translated to TV constraints.

Variable Wrapping. For every logical variable to be involved in a CLP(JrI?)
constraint we will attach to it an attribute containing an TV variable:

4 Some features of this engine are currently disabled, but we are planning to activate
all such features shortly. The labeling engine was in fact extracted from the tor
library [16], where it is isolated in a single file.

5 The old labeling engine can be found in revisions older than 14721 of Ciao 1.15.

1 wrapper(A, X) : - g e t _ a t t r _ l o c a l (A , X), ! .
2 wrapper(A, X) : - var (A) , ! , fd_term:new(X) , p u t _ a t t r _ l o c a l (A , X) .
3 wrapper(X, X) : - i n t e g e r (X) , ! .

Logical variables and finite domain variables may communicate in two ways. In
the first one, two logical variables may be unified, needing to link their underlying
finite domain variables. We implement this communication using the uni f y_hook
at t r ibute:

1 attr_unify_hook(IdxVar, Other):-

2 (nonvar(Other) ->

3 (integer(Other) ->

4 fd_constraints:'a=t'(IdxVar, Other)
5 ; clpfd_error(type_error(Other), '='/2)

6)
7 ; g e t _ a t t r _ l o c a l (O t h e r , IdxVar_) ->
8 f d _ c o n s t r a i n t s : ' a = b ' (I d x V a r , IdxVar_)
9 ; p u t _ a t t r _ l o c a l (O t h e r , IdxVar)

10) .

We simply call the TV constraints ' a = b ' / 2 and ' a = t ' / 2 .
The other form of communication is instantiation of the logical variable

when the corresponding finite domain one gets a singleton range. We modify
the wrapper predicate to add an instantiation goal to the val chain of freshly
created TV vars, i.e., we replace the second clause within the definition of the
wrapper by the following one:

1 wrapper(A, X) : - var (A) , ! , fd_term:new(X) , p u t _ a t t r _ l o c a l (A , X) ,
2 % Force instantiation of A when X represents an integer
3 fd_term:add_propag(X, v a l , ' f d _ t e r m : i n t e g e r i z e ' (X , A)) .

This small example points out the possibilities of our scheme beyond the current
use as a support for indexicals.

Constra int C o m p i l a t i o n . The TV solver provides a finite set of TV con­

straints, however, in the CLP(TV) side we may encounter constraints such as:

1 A # = B + C + D + E

which should be linearized to

1 Al #= D + E ,

2 B l #= B + C,

3 A #= Al + Bl

and then wrapped to: 6

6 We profit here from Ciao's functional notation such that for p(X,Y), ~p(X) is han­
dled syntactically like a function with return value Y.

1 'a=b+c'(~wrapper(Al), ~wrapper(D), ~wrapper(E)),

2 'a=b+c'(~wrapper(Bl), ~wrapper(B), ~wrapper(C)),
3 'a=b+c'(~wrapper(A) , ~wrapper(Al), ~wrapper(Bl))

We provide a small compiler which takes care of this process, along with other
features like compile-time integer detection.

3 Glass-Box Programming

As previously stated, we encourage the use of a glass box approach when pro­
gramming with this library. We will use the classical queens program in order
to illustrate some of the possibilities that the library offers:

— The use of different range implementations.
— The direct use of the TV constraints, skipping the CLP(.FD) compiler.
— The definition of new TV constraints using indexicals.
— The definition of new atomic constraints directly using the solver kernel,

thus skipping the indexical compiler.

Benchmarking Conditions: We provide for illustration purposes some prelimi­
nary experimental results. However, it is important to point out that the library
is not yet in a state in which relevant absolute performance numbers can be
produced and its performance potential fully assessed, since it is still missing
important optimizations. Also, only two benchmarks are used.

The benchmarks were run using Ciao 1.15 (revision 14744) on an Intel(R)
Core(TM)2 CPU T7200 @ 2.00GHz computer. For reference, we include also
the corresponding numbers for SWI Prolog (v. 5.10.4). The purpose is not to
make an extensive comparison7 but rather to have a simple, well understood
baseline with which to compare. We should note that we did not explore SWI's
support for custom constraints. At the same time, during these tests we have
determined that backtracking over changes made by s e t a r g / 3 is currently sig­
nificantly slower in Ciao than in SWI, which, given the reliance of the imple­
mentation on s e t a r g / 3 gives us a clear avenue for performance improvement,
independently of any changes to the library itself.

The complete program used in the benchmark is shown in Appendix A. Basi­
cally a benchmark has three run time parameters, the number of queens (n=N),
the labeling strategy (either "step" or "first fail"8), and the constraints used,
whose meaning will be explained later. For SWI, only the first two parameters
carry significance.

7 This is left as future work where, in addition to implementing the optimizations
mentioned, we will include comparison with a number of other systems as well.

8 Comparing the Ciao and SWI libraries using the heuristic labeling strategies as "first
fail" is relevant since both use the same code for labeling.

Queens Parameters
n=16, step, clpfd
n=16, step, fd
n=16, step, idx
n=16, step, kernel
n=90, ff, clpfd
n=90, ff, fd
n=90, ff, idx
n=90, ff, kernel

Bits
0.916
0.572
0.388
0.224
2.080
1.112
0.752
0.388

Closed
1.144
0.848
0.648
0.336
2.052
1.272
1.124
0.408

Open
1.432
1.104
0.916
0.368
2.484
1.592
1.588
0.432

SWf
1.050
-
-
-
1.071
-
-
-

Fig. 5. Queens Benchmark.

3.1 Range Implementations

As previously stated, the library provides three range implementations, selectable
at compile-time. The standard one is called "Closed," and represents ranges using
a Prolog list of intervals of integers. Thus, every TV variable is always bound.
"Open" is a variation of this approach where the intervals are enriched with
constants sup and inf. This imposes a penalty on bound arithmetic. Lastly, we
compare both against a simple bit-vector implementation, done mostly in Prolog
with a small support from C. The results can be seen in Fig. 5. The differences
go from negligible to more than 50%. In a different benchmark (bridge), the
closed interval version was 25% faster than the open one.

3.2 Constraint Implementations

We now focus on the different possibilities that the library allows for TV con­
straint programming.

In the queens program, the main constraint of the problem is expressed by
the dif f / 3 constraint:

1 diff(X, Y, I) : -
2 X #\= Y,
3 X #\= Y+I,
4 X+I #\= Y.

where I will be always an integer.
However, the compiler cannot (yet) detect that I is an integer, and may

perform some unnecessary linearization. We may skip the compiler and define
dif f using directly the TV constraints:

1 diff(X, Y, I):-
2 fd_constraints: 'aOb' (~w(X) ,~w(Y)) ,
3 fd_constraints:'a<>b+t'(X, Y, I),
4 fd_constraints:'a<>b+t'(Y, X, I).

The speedup is considerable, getting close to 50% speedup in some cases. Indeed,
the compiler should be improved to produce this kind of code by default.

The user may notice that the above three constraints may be encoded by
using just two indexicals. For instance one can use the following definition for
diff/3:

1 d i f f (X ,Y, I) : -
2 idx_diff(~w(X), ~w(Y), I) .
3 idx_diff(X, Y, I) +:
4 X in -{val(Y), val(Y)+c(I) , val(Y)-c(I)>,
5 Y in -{val(X), val(X)+c(I) , val(X)-c(I)> .

Again, the improvement is up to 40% from the previous version.
However, the constraint dif f can be improved significantly by using directly

the kernel delay mechanism (val chain) and TV variable operations. In particu­
lar, we use the optimized kernel prune/2 operation that removes a single element
form the range of a variable:

1 diff(X, Y, I):-
2 wrapper(X, XO), wrapper(Y, YO)
3 fd_term:add_propag(Y, val, 'queens:cstr'(XO, YO, I)),
4 fd_term:add_propag(X, val, 'queens:cstr'(YO, XO, I)).
5
6 % Y is always a singleton.
7 cstr(X, Y, I) : -
8 fd_term:integerize(Y, YO),
9 fd_term:prune(X, YO),
10 Yl is YO + I,
11 fd_term:prune(X, Yl),
12 Y2 is YO - I,
13 fd_term:prune(X, Y2).

We reach around 80% speedup from the first version, and this result is optimal
regarding what the user can do. Additional speedups can be achieved, but not
without going beyond our glass-box approach. Indeed, our CLP(JrI?) compiler
is simpler given that we are working on a new translator that directly generates
custom kernel constraints from CLP(JrI?) constraints.

4 Conclusions and Future Work

The Ciao CLP(JrI?) library described is distributed with the latest Ciao version,
available at http : //ciaohome. org. Although included in the main distribution,
it lives in the contrib directory, as it should be considered at a beta stage of
development.

Even if we did not include yet important optimizations that should improve
significantly the performance of the library, the current results are encouraging.
The library has been used successfully internally within the Ciao development
team in a number of projects.

The modular design and low coupling of components allow their easy re­
placement and improvement. Indeed, every individual piece may be used in a
glass-box fashion. We expect that the use of Prolog will allow the integration
with Ciao's powerful static analyzers. At the same time, the clear separation of
run-time and compile-time phases allows the modification and the improvement
of the translation schemes in an independent manner. Indeed, the advantages of
this design have already been showcased in [17], where a Prolog to Javascript
cross-compiler was used to provide a JS version of the library and which only
required replacing a few lines of code. Using this cross-compiler CLP(.FD) pro­
grams can be run on the server side or on the browser side unchanged.

Regarding future work, we distinguish two main lines: the kernel and the
CLP(JT>) compiler.

For the kernel, the first priority is to finish settling down its interface. While
we consider it mature, some optimizations — like avoiding reexecution — may
require that we include more information in our TV variable structure, range
modification times, etc. Indeed, we would like to support more strategies for
propagators than the current linear one. Support for some global constraints is
on the roadmap, and will likely mean the addition of more propagation chains.

The library features primitive but very useful statistics. However we think it
is not enough and we are working on an TV instrumentation package that will
provide detailed statistics and profiling. This is key in order to extract the max­
imum performance from the library. Once we get detailed profiling information
from a wide variety of benchmarks, a better range implementation will be due.

Regarding the CLP(JrI?) compiler, the current version should be considered
a proof of concept. Indeed, we are studying alternative strategies including the
generation of custom kernels or specialized TV constraints for each particular
program in contrast to the current approach of mapping a CLP(JrI?) program to
a fixed set of primitive constraints. CiaoPP — Ciao's powerful abstract interpre­
tation engine — could be used in the translation, providing information about
the CLP(JrI?) program to the CLP(JrI?) compiler so it can generate an optimal
kernel of TV code for that program. In this sense, we think that we will follow
the CiaoPP approach of combining inference with user-provided annotations in
the new CLP(JrI?) compiler.

References

1. Jaffar, J., Maher, M.: Constraint LP: A Survey. JLP 19/20 (1994) 503-581
2. Van Hentenryck, P., Saraswat, V., Deville, Y.: Design, implementation and eval­

uation ol the constraint language cc(fd). Journal ol Logic Programming 37(1-3)
(1998) 139-164

3. Dib, M., Abdallah, R., Caminada, A.: Arc-consistency in constraint satislaction
problems: A survey. In: Second International Conference on Computational Intel­
ligence, Modelling and Simulation. (2010) 291-296

4. Hermenegildo, M.V., Bueno, F., Carro, M., Lopez, P., Mera, E., Morales,
J., Puebla, G.: An Overview of Ciao and its Design Philosophy. The­
ory and Practice of Logic Programming 12(1-2) (January 2012) 219-252
http://arxiv.org/abs/1102.5497.

5. Dincbas, M., Hentenryck, P.V., Simonis, H., Aggoun, A.: The Constraint Logic
Programming Language CHIP. In: Proceedings of the 2nd International Conference
on Fifth Generation Computer Systems. (1988) 249-264

6. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint
solver. In: Proceedings of the9th International Symposium on Programming Lan­
guages: Implementations, Logics, and Programs: Including a Special Trach on
Declarative Programming Languages in Education. PLILP '97, London, UK, UK,
Springer-Verlag (1997) 191-206

7. D. Diaz, S.A., Codognet, P.: On the implementation of GNU Prolog. Theory and
Practice of Logic Programming 12(1-2) (January 2012) 253-282

8. Codognet, P., Diaz, D.: Compiling constraints in clp(fd). J. Log. Program. 27(3)
(1996) 185-226

9. Zhou, N.F.: Programming finite-domain constraint propagators in action rules.
Theory Pract. Log. Program. 6(5) (September 2006) 483-507

10. Triska, M.: The finite domain constraint solver of swi-prolog. In Schrijvers, T.,
Thiemann, P., eds.: Functional and Logic Programming. Volume 7294 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg (2012) 307-316

11. Morales, J.F., Hermenegildo, M.V., Haemmerle, R.: Modular Extensions for Mod­
ular (Logic) Languages. In: 21th International Symposium on Logic-Based Pro­
gram Synthesis and Transformation (LOPSTR'l l) , Odense, Denmark (July 2011)
To appear.

12. Diaz, D., Codognet, P.: A Minimal Extension of the WAM for c lp(fd) . In: Pro­
ceedings of the Tenth International Conference on Logic Programming, Budapest,
MIT press (June 1993) 774-790

13. Cabeza, D., Hermenegildo, M.: A New Module System for Prolog. In: International
Conference on Computational Logic, CL2000. Number 1861 in LNAI, Springer-
Verlag (July 2000) 131-148

14. Hermenegildo, M., Puebla, G., Bueno, F., Lopez-Garcia, P.: Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming 58(1-2) (2005)
115-140

15. Tarau, P.: BinProlog 2006 version 11.x Professional Edition User Guide. BinNet
Corporation. (2006) Available from http://www.binnetcorp.com/.

16. Schrijvers, T., Triska, M., Demoen, B.: Tor: Extensible Search with Hookable Dis­
junction. Draft. Available from h t t p : / / u s e r s . u g e n t . b e / ~ t s c h r i j v / t o r / (2012)

17. Morales, J.F., Haemmerle, R., Carro, M., Hermenegildo, M.V.: Lightweight com­
pilation of (C)LP to JavaScript. Theory and Practice of Logic Programming, 28th
Int'l. Conference on Logic Programming (ICLPT2) Special Issue (2012) To appear.

http://arxiv.org/abs/1102.5497
http://www.binnetcorp.com/
http://users.ugent.be/~tschrijv/tor/

A Complete Code for the Queens Example

1 queens(N, L, Lab, Const) :-

2 length(L, N),

3 domain(L, 1, N),

4 safe(L, Const),

5 labeling(Lab, L).

6

7 safe([], _Const).

8 safe([X|L], Const) :-

9 noattack(L, X, 1, Const),

10 safe(L, Const).

11

12 n o a t t a c k ([] , _, _, _Const).
13 noattack([Y|L] , X, I , Const) : -
14 diff (Const , X, Y, I) ,
15 I I i s I + 1,
16 noattack(L, X, II, Const).

17

18 diff(clpfd, X, Y, I) :-

19 X #\= Y, X #\= Y+I, X+I #\= Y.

20

21 diff(fd, X,Y,I):-

22 fd_diff("wrapper(X), ~wrapper(Y), I).

23

24 fd_diff(X, Y, I):-

25 fd_constraints:'a<>b'(X,Y),

26 fd_constraints:'a<>b+t'(X,Y,I),

27 fd_constraints:'a<>b+t'(Y,X,I).

28

29 diff(idx, X,Y,I):-

30 idx_diff("wrapper(X), ~wrapper(Y), I).

31

32 idx_diff(X, Y, I) +:

33 X in -{val(Y), val(Y)+c(I), val(Y)-c(I)},

34 Y in -{val(X), val(X)-c(I), val(X)+c(I)}.

35

36 diff(kernel, X,Y,I):-

37 kernel_diff("wrapper(X), "wrapper(Y), I).

38

39 kernel_diff(X, Y, I) :-

40 fd_term:add_propag(Y, val, 'queens:cstr'(X, Y, I)),

41 fd_term:add_propag(X, val, 'queens:cstr'(Y, X, I)).

42

43 cstr(X, Y, I):-

44 fd_term:integerize(Y, Y0),

45 fd_term:prune(X, Y0),

46 Yl is Y0 + I, fd_term:prune(X, Yl),

47 Y2 is Y0 - I, fd_term:prune(X, Y2).

