29 research outputs found

    Phylogenetic and regulatory region analysis of Wnt5 genes reveals conservation of a regulatory module with putative implication in pancreas development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Wnt5 </it>genes belong to the large <it>Wnt </it>family, encoding proteins implicated into several tumorigenic and developmental processes. Phylogenetic analyses showed that <it>Wnt5 </it>gene has been duplicated at the divergence time of gnathostomata from agnatha. Interestingly, experimental data for some species indicated that only one of the two <it>Wnt5 </it>paralogs participates in the development of the endocrine pancreas. The purpose of this paper is to reexamine the phylogenetic history of the Wnt5 developmental regulators and investigate the functional shift between paralogs through comparative genomics.</p> <p>Results</p> <p>In this study, the phylogeny of <it>Wnt5 </it>genes was investigated in species belonging to <it>protostomia </it>and <it>deuterostomia</it>. Furthermore, an <it>in silico </it>regulatory region analysis of <it>Wnt5 </it>paralogs was conducted, limited to those species with insulin producing cells and pancreas, covering the evolutionary distance from agnatha to gnathostomata. Our results confirmed the <it>Wnt5 </it>gene duplication and additionally revealed that this duplication event included also the upstream region. Moreover, within this latter region, a conserved module was detected to which a complex of transcription factors, known to be implicated in embryonic pancreas formation, bind.</p> <p>Conclusions</p> <p>Results and observations presented in this study, allow us to conclude that during evolution, the <it>Wnt5 </it>gene has been duplicated in early vertebrates, and that some paralogs conserved a module within their regulatory region, functionally related to embryonic development of pancreas. Interestingly, our results allowed advancing a possible explanation on why the <it>Wnt5 </it>orthologs do not share the same function during pancreas development. As a final remark, we suggest that an <it>in silico </it>comparative analysis of regulatory regions, especially when associated to published experimental data, represents a powerful approach for explaining shift of roles among paralogs.</p> <p>Reviewers</p> <p>This article was reviewed by Sarath Janga (nominated by Sarah Teichmann), Ran Kafri (nominated by Yitzhak Pilpel), and Andrey Mironov (nominated by Mikhail Gelfand).</p

    In silico Transcriptional Regulatory Networks Involved in Tomato Fruit Ripening

    Get PDF
    ABSTRACTTomato fruit ripening is a complex developmental programme partly mediated by transcriptional regulatory networks. Several transcription factors (TFs) which are members of gene families such as MADS-box and ERF were shown to play a significant role in ripening through interconnections into an intricate network. The accumulation of large datasets of expression profiles corresponding to different stages of tomato fruit ripening and the availability of bioinformatics tools for their analysis provide an opportunity to identify TFs which might regulate gene clusters with similar co-expression patterns. We identified two TFs, a SlWRKY22-like and a SlER24 transcriptional activator which were shown to regulate modules by using the LeMoNe algorithm for the analysis of our microarray datasets representing four stages of fruit ripening, breaker, turning, pink and red ripe. The WRKY22-like module comprised a subgroup of six various calcium sensing transcripts with similar to the TF expression patterns according to real time PCR validation. A promoter motif search identified a cis acting element, the W-box, recognized by WRKY TFs that was present in the promoter region of all six calcium sensing genes. Moreover, publicly available microarray datasets of similar ripening stages were also analyzed with LeMoNe resulting in TFs such as SlERF.E1, SlERF.C1, SlERF.B2, SLERF.A2, SlWRKY24, SLWRKY37 and MADS-box/TM29 which might also play an important role in regulation of ripening. These results suggest that the SlWRKY22-like might be involved in the coordinated regulation of expression of the six calcium sensing genes. Conclusively the LeMoNe tool might lead to the identification of putative TF targets for further physiological analysis as regulators of tomato fruit ripening

    Transcriptome map of mouse isochores

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The availability of fully sequenced genomes and the implementation of transcriptome technologies have increased the studies investigating the expression profiles for a variety of tissues, conditions, and species. In this study, using RNA-seq data for three distinct tissues (brain, liver, and muscle), we investigate how base composition affects mammalian gene expression, an issue of prime practical and evolutionary interest.</p> <p>Results</p> <p>We present the transcriptome map of the mouse isochores (DNA segments with a fairly homogeneous base composition) for the three different tissues and the effects of isochores' base composition on their expression activity. Our analyses also cover the relations between the genes' expression activity and their localization in the isochore families.</p> <p>Conclusions</p> <p>This study is the first where next-generation sequencing data are used to associate the effects of both genomic and genic compositional properties to their corresponding expression activity. Our findings confirm previous results, and further support the existence of a relationship between isochores and gene expression. This relationship corroborates that isochores are primarily a product of evolutionary adaptation rather than a simple by-product of neutral evolutionary processes.</p

    IsoXpressor: A Tool to Assess Transcriptional Activity within Isochores

    Get PDF
    Genomes are characterized by large regions of homogeneous base compositions known as isochores. The latter are divided into GC-poor and GC-rich classes linked to distinct functional and structural properties. Several studies have addressed how isochores shape function and structure. To aid in this important subject, we present IsoXpressor, a tool designed for the analysis of the functional property of transcription within isochores. IsoXpressor allows users to process RNA-Seq data in relation to the isochores, and it can be employed to investigate any biological question of interest for any species. The results presented herein as proof of concept are focused on the preimplantation process in Homo sapiens (human) and Macaca mulatta (rhesus monkey)

    Compositional Genome Contexts Affect Gene Expression Control in Sea Urchin Embryo

    Get PDF
    Gene expression is widely perceived as exclusively controlled by the information contained in cis-regulatory regions. These are built in a modular way, each module being a cluster of binding sites for the transcription factors that control the level, the location and the time at which gene transcription takes place. On the other hand, results from our laboratory have shown that gene expression is affected by the compositional properties (GC levels) of the isochores in which genes are embedded, i.e. the genome context. To clarify how compositional genomic properties affect the way cis-regulatory information is utilized, we have changed the genome context of a GFP-reporter gene containing the complete cis-regulatory region of the gene spdeadringer (spdri), expressed during sea urchin embryogenesis. We have observed that GC levels higher or lower than those found in the natural genome context can alter the reporter expression pattern. We explain this as the result of an interference with the functionality of specific modules in the gene's cis-regulatory region. From these observations we derive the notion that the compositional properties of the genome context can affect cis-regulatory control of gene expression. Therefore although the way a gene works depends on the information contained in its cis-regulatory region, availability of such information depends on the compositional properties of the genomic context

    Suppression of a Prolyl 4 Hydroxylase Results in Delayed Abscission of Overripe Tomato Fruits

    Get PDF
    The tomato pedicel abscission zone (AZ) is considered a model system for flower and fruit abscission development, activation, and progression. O-glycosylated proteins such as the Arabidopsis IDA (INFLORESCENCE DEFICIENT IN ABSCISSION) peptide and Arabinogalactan proteins (AGPs) which undergo proline hydroxylation were demonstrated to participate in abscission regulation. Considering that the frequency of occurrence of proline hydroxylation might determine the structure as well the function of such proteins, the expression of a tomato prolyl 4 hydroxylase, SlP4H3 (Solanum lycopersicum Prolyl 4 Hydroxylase 3) was suppressed in order to investigate the physiological significance of this post-translational modification in tomato abscission. Silencing of SlP4H3 resulted in the delay of abscission progression in overripe tomato fruits 90 days after the breaker stage. The cause of this delay was attributed to the downregulation of the expression of cell wall hydrolases such as SlTAPGs (tomato abscission polygalacturonases) and cellulases as well as expansins. In addition, minor changes were observed in the mRNA levels of two SlAGPs and one extensin. Moreover, structural changes were observed in the silenced SlP4H3AZs. The fracture plane of the AZ was curved and not along a line as in wild type and there was a lack of lignin deposition in the AZs of overripe fruits 30 days after breaker. These results suggest that proline hydroxylation might play a role in the regulation of tomato pedicel abscission

    Differential Selective Constraints Shaping Codon Usage Pattern of Housekeeping and Tissue-specific Homologous Genes of Rice and Arabidopsis

    Get PDF
    Intra-genomic variation between housekeeping and tissue-specific genes has always been a study of interest in higher eukaryotes. To-date, however, no such investigation has been done in plants. Availability of whole genome expression data for both rice and Arabidopsis has made it possible to examine the evolutionary forces in shaping codon usage pattern in both housekeeping and tissue-specific genes in plants. In the present work, we have taken 4065 rice–Arabidopsis homologous gene pairs to study evolutionary forces responsible for codon usage divergence between housekeeping and tissue-specific genes. In both rice and Arabidopsis, it is mutational bias that regulates error minimization in highly expressed genes of both housekeeping and tissue-specific genes. Our results show that, in comparison to tissue-specific genes, housekeeping genes are under strong selective constraint in plants. However, in tissue-specific genes, lowly expressed genes are under stronger selective constraint compared with highly expressed genes. We demonstrated that constraint acting on mRNA secondary structure is responsible for modulating codon usage variations in rice tissue-specific genes. Thus, different evolutionary forces must underline the evolution of synonymous codon usage of highly expressed genes of housekeeping and tissue-specific genes in rice and Arabidopsis

    Exploring the gonad transcriptome of two extreme male pigs with RNA-seq

    Get PDF
    Background: Although RNA-seq greatly advances our understanding of complex transcriptome landscapes, such as those found in mammals, complete RNA-seq studies in livestock and in particular in the pig are still lacking. Here, we used high-throughput RNA sequencing to gain insight into the characterization of the poly-A RNA fraction expressed in pig male gonads. An expression analysis comparing different mapping approaches and detection of allele specific expression is also discussed in this study. Results: By sequencing testicle mRNA of two phenotypically extreme pigs, one Iberian and one Large White, we identified hundreds of unannotated protein-coding genes (PcGs) in intergenic regions, some of them presenting orthology with closely related species. Interestingly, we also detected 2047 putative long non-coding RNA (lncRNA), including 469 with human homologues. Two methods, DEGseq and Cufflinks, were used for analyzing expression. DEGseq identified 15% less expressed genes than Cufflinks, because DEGseq utilizes only unambiguously mapped reads. Moreover, a large fraction of the transcriptome is made up of transposable elements (14500 elements encountered), as has been reported in previous studies. Gene expression results between microarray and RNA-seq technologies were relatively well correlated (r = 0.71 across individuals). Differentially expressed genes between Large White and Iberian showed a significant overrepresentation of gamete production and lipid metabolism gene ontology categories. Finally, allelic imbalance was detected in ~ 4% of heterozygous sites. Conclusions: RNA-seq is a powerful tool to gain insight into complex transcriptomes. In addition to uncovering many unnanotated genes, our study allowed us to determine that a considerable fraction is made up of long non-coding transcripts and transposable elements. Their biological roles remain to be determined in future studies. In terms of differences in expression between Large White and Iberian pigs, these were largest for genes involved in spermatogenesis and lipid metabolism, which is consistent with phenotypic extreme differences in prolificacy and fat deposition between these two breeds
    corecore