33 research outputs found

    Polymerase III transcription is necessary for T cell priming by dendritic cells

    Get PDF
    Exposure to microbe-associated molecular patterns (MAMPs) causes dendritic cells (DCs) to undergo a remarkable activation process characterized by changes in key biochemical mechanisms. These enhance antigen processing and presentation, as well as strengthen DC capacity to stimulate naïve T cell proliferation. Here, we show that in response to the MAMPS lipopolysaccharide and polyriboinosinic:polyribocytidylic acid (Poly I:C), RNA polymerase III (Pol lII)-dependent transcription and consequently tRNA gene expression are strongly induced in DCs. This is in part caused by the phosphorylation and nuclear export of MAF1 homolog negative regulator of Poll III (MAF1), via a synergistic casein kinase 2 (CK2)- and mammalian target of rapamycin-dependent signaling cascade downstream of Toll-like receptors (TLRs). De novo tRNA expression is necessary to augment protein synthesis and compensate for tRNA degradation driven by TLR-dependent DC exposure to type-I IFN. Although protein synthesis is not strongly inhibited in absence of RNA Pol III activity, it compromises the translation of key DC mRNAs, like those coding for costimulatory molecules and proinflammatory cytokines, which instead can be stored in stress granules, as shown for CD86 mRNA. TLR-dependent CK2 stimulation and subsequent RNA Pol III activation are therefore key for the acquisition by DCs of their unique T cell immune-stimulatory functions.publishe

    Detection of a Subset of Posttranscriptional Transfer RNA Modifications in Vivo with a Restriction Fragment Length Polymorphism-Based Method

    Get PDF
    Transfer RNAs (tRNAs) are among the most heavily modified RNA species. Posttranscriptional tRNA modifications (ptRMs) play fundamental roles in modulating tRNA structure and function and are being increasingly linked to human physiology and disease. Detection of ptRMs is often challenging, expensive, and laborious. Restriction fragment length polymorphism (RFLP) analyses study the patterns of DNA cleavage after restriction enzyme treatment and have been used for the qualitative detection of modified bases on mRNAs. It is known that some ptRMs induce specific and reproducible base “mutations” when tRNAs are reverse transcribed. For example, inosine, which derives from the deamination of adenosine, is detected as a guanosine when an inosine-containing tRNA is reverse transcribed, amplified via polymerase chain reaction (PCR), and sequenced. ptRM-dependent base changes on reverse transcription PCR amplicons generated as a consequence of the reverse transcription reaction might create or abolish endonuclease restriction sites. The suitability of RFLP for the detection and/or quantification of ptRMs has not been studied thus far. Here we show that different ptRMs can be detected at specific sites of different tRNA types by RFLP. For the examples studied, we show that this approach can reliably estimate the modification status of the sample, a feature that can be useful in the study of the regulatory role of tRNA modifications in gene expression

    mtDNA Haplogroup A Enhances the Effect of Obesity on the Risk of Knee OA in a Mexican Population

    Get PDF
    [Abstract] To evaluate the influence of mitochondrial DNA haplogroups on the risk of knee OA in terms of their interaction with obesity, in a population from Mexico. Samples were obtained from (n = 353) knee OA patients (KL grade ≥ I) and (n = 364) healthy controls (KL grade = 0) from Mexico city and Torreon (Mexico). Both Caucasian and Amerindian mtDNA haplogroups were assigned by single base extension assay. A set of clinical and demographic variables, including obesity status, were considered to perform appropriate statistical approaches, including chi-square contingency tables, regression models and interaction analyses. To ensure the robustness of the predictive model, a statistical cross-validation strategy of B = 1000 iterations was used. All the analyses were performed using boot, GmAMisc and epiR package from R software v4.0.2 and SPSS software v24. The frequency distribution of the mtDNA haplogroups between OA patients and healthy controls for obese and non-obese groups showed the haplogroup A as significantly over-represented in knee OA patients within the obese group (OR 2.23; 95% CI 1.22-4.05; p-value = 0.008). The subsequent logistic regression analysis, including as covariate the interaction between obesity and mtDNA haplogroup A, supported the significant association of this interaction (OR 2.57; 95% CI 1.24-5.32; p-value = 0.011). The statistical cross-validation strategy confirmed the robustness of the regression model. The data presented here indicate a link between obesity in knee OA patients and mtDNA haplogroup A.This work is supported by Grants from Fondo de Investigación Sanitaria (PI17/00210, PI16/02124, PI20/00614, RETIC-RIER-RD16/0012/0002 and PRB3-ISCIII-PT17/0019/0014) integrated in the National Plan for Scientific Program, Development and Technological Innovation 2013–2016 and funded by the ISCIII-General Subdirection of Assessment and Promotion of Research-European Regional Development Fund (FEDER) “A way of making Europe” and Grant IN607A2017/11 from Xunta de Galicia. The authors further acknowledge AE CICA-INIBIC (ED431E 2018/03) for financial support. IRP is supported by Contrato Miguel Servet-II Fondo de Investigación Sanitaria (CPII17/00026) and AD-S is supported by Grant IN606A-2018/023 from Xunta de Galicia, Spain. The Biomedical Research Networking Center (CIBER) is an initiative from Instituto de Salud Carlos III (ISCIII)Xunta de Galicia; IN607A2017/11Xunta de Galicia; ED431E 2018/03Xunta de Galicia; IN606A-2018/02

    Inhibitory Receptors Are Expressed by Trypanosoma cruzi-Specific Effector T Cells and in Hearts of Subjects with Chronic Chagas Disease

    Get PDF
    We had formerly demonstrated that subjects chronically infected with Trypanosoma cruzi show impaired T cell responses closely linked with a process of T cell exhaustion. Recently, the expression of several inhibitory receptors has been associated with T cell dysfunction and exhaustion. In this study, we have examined the expression of the cytotoxic T lymphocyte antigen 4 (CTLA-4) and the leukocyte immunoglobulin like receptor 1 (LIR-1) by peripheral T. cruzi antigen-responsive IFN-gamma (IFN-γ)-producing and total T cells from chronically T. cruzi-infected subjects with different clinical forms of the disease. CTAL-4 expression was also evaluated in heart tissue sections from subjects with severe myocarditis. The majority of IFN-γ-producing CD4+ T cells responsive to a parasite lysate preparation were found to express CTLA-4 but considerably lower frequencies express LIR-1, irrespective of the clinical status of the donor. Conversely, few IFN-γ-producing T cells responsive to tetanus and diphtheria toxoids expressed CTLA-4 and LIR-1. Polyclonal stimulation with anti-CD3 antibodies induced higher frequencies of CD4+CTAL-4+ T cells in patients with severe heart disease than in asymptomatic subjects. Ligation of CTLA-4 and LIR-1 with their agonistic antibodies, in vitro, reduces IFN-γ production. Conversely, CTLA-4 blockade did not improved IFN-γ production in response to T. cruzi antigens. Subjects with chronic T. cruzi infection had increased numbers of CD4+LIR-1+ among total peripheral blood mononuclear cells, relative to uninfected individuals and these numbers decreased after treatment with benznidazole. CTLA-4 was also expressed by CD3+ T lymphocytes infiltrating heart tissues from chronically infected subjects with severe myocarditis. These findings support the conclusion that persistent infection with T. cruzi leads to the upregulation of inhibitory receptors which could alter parasite specific T cell responses in the chronic phase of Chagas disease

    TCR signaling and cellular metabolism regulate the capacity of murine epidermal γδ T cells to rapidly produce IL-13 but not IFN-γ

    Get PDF
    Resident epidermal T cells of murine skin, called dendritic epidermal T cells (DETCs), express an invariant γδ TCR that recognizes an unidentified self-ligand expressed on epidermal keratinocytes. Although their fetal thymic precursors are preprogrammed to produce IFN-γ, DETCs in the adult epidermis rapidly produce IL-13 but not IFN-γ early after activation. Here, we show that preprogrammed IFN-γ-producing DETC precursors differentiate into rapid IL-13 producers in the perinatal epidermis. The addition of various inhibitors of signaling pathways downstream of TCR to the in vitro differentiation model of neonatal DETCs revealed that TCR signaling through the p38 MAPK pathway is essential for the functional differentiation of neonatal DETCs. Constitutive TCR signaling at steady state was also shown to be needed for the maintenance of the rapid IL-13-producing capacity of adult DETCs because in vivo treatment with the p38 MAPK inhibitor decreased adult DETCs with the rapid IL-13-producing capacity. Adult DETCs under steady-state conditions had lower glycolytic capacity than proliferating neonatal DETCs. TCR stimulation of adult DETCs induced high glycolytic capacity and IFN-γ production during the late phase of activation. Inhibition of glycolysis decreased IFN-γ but not IL-13 production by adult DETCs during the late phase of activation. These results demonstrate that TCR signaling promotes the differentiation of IL-13-producing DETCs in the perinatal epidermis and is needed for maintaining the rapid IL-13-producing capacity of adult DETCs. The low glycolytic capacity of adult DETCs at steady state also regulates the rapid IL-13 response and delayed IFN-γ production after activation

    Transformant strains of the mycoparasite fungus Trichoderma spp. which promote the growth and resistance to fungal and bacterial diseases in solanaceae plants, composition containing the same, application process and use thereof

    No full text
    "La presente invención describe y reclama cepas transformantes novedosas del hongo Trichoderma ssp., capaces de promover el crecimiento y la resistencia a fitopatógenos en plantas de interés agronómico de una manera significativa en comparación con las cepas convencionales. La utilización de estas cepas disminuyen considerablemente el uso abonos y de pesticidas químicos cuya fabricación y uso dañan el medio ambiente y la salud humana.""The present invention describes and claims novel transformant strains of the Trichoderma ssp fungus, which promote the growth and resistance to phytopathogens in plants of agricultural interests in a significant manner unlike traditional strains. The use of said strains reduces in a substantial manner the application of manures and chemical pesticides which manufacture and usage damage the environment and human health.

    Green synthesis and characterization of gold-based anisotropic nanostructures using bimetallic nanoparticles as seeds

    No full text
    Nanostructured noble metals are of great interest because of their tunable optical and electronic properties. However, the green synthesis of anisotropic nanostructures with a defined geometry by the systematic nanoassembly of particles into specific shape, size, and crystallographic facets still faces major challenges. The present work aimed to establish an environmentally friendly methodology for synthesizing gold-based anisotropic nanostructures using starch-capped bimetallic silver/gold nanoparticles as seeds and hydrogen peroxide as a reducing agent.The authors thank the i-Link+2019 program between CSIC and Tecnologico de Monterrey (ref. LINKB20024 “NANOBIO-ROJA”) for financial support. We thank Marcelo Videa for proofreading the article.Peer reviewe
    corecore