67 research outputs found

    Altered balance of glutamatergic/GABAergic synaptic input and associated changes in dendrite morphology after BDNF expression in BDNF-deficient hippocampal neurons

    Get PDF
    Cultured neurons from bdnf-/- mice display reduced densities of synaptic terminals, although in vivo these deficits are small or absent. Here we aimed at clarifying the local responses to postsynaptic brain-derived neurotrophic factor (BDNF). To this end, solitary enhanced green fluorescent protein (EGFP)-labeled hippocampal neurons from bdnf-/- mice were compared with bdnf-/- neurons after transfection with BDNF, bdnf-/- neurons after transient exposure to exogenous BDNF, and bdnf+/+ neurons in wild-type cultures. Synapse development was evaluated on the basis of presynaptic immunofluorescence and whole-cell patch-clamp recording of miniature postsynaptic currents. It was found that neurons expressing BDNF::EGFP for at least 16 h attracted a larger number of synaptic terminals than BDNF-deficient control neurons. Transfected BDNF formed clusters in the vicinity of glutamatergic terminals and produced a stronger upregulation of synaptic terminal numbers than high levels of ambient BDNF. Glutamatergic and GABAergic synapses reacted differently to postsynaptic BDNF: glutamatergic input increased, whereas GABAergic input decreased. BDNF::EGFP-expressing neurons also differed from BDNF-deficient neurons in their dendrite morphology: they exhibited weaker dendrite elongation and stronger dendrite initiation. The upregulation of glutamatergic synaptic input and the BDNF-induced downregulation of GABAergic synaptic terminal numbers by postsynaptic BDNF depended on tyrosine receptor kinase B activity, as deduced from the blocking effects of K252a. The suppression of dendrite elongation was also prevented by block of tyrosine receptor kinase B but required, in addition, glutamate receptor activity. Dendritic length decreased with the number of glutamatergic contacts. These results illuminate the role of BDNF as a retrograde synaptic regulator of synapse development and the dependence of dendrite elongation on glutamatergic input

    Combining series elastic actuation and magneto-rheological damping for the control of agile locomotion

    Get PDF
    All-terrain robot locomotion is an active topic of research. Search and rescue maneuvers and exploratory missions could benefit from robots with the abilities of real animals. However, technological barriers exist to ultimately achieving the actuation system, which is able to meet the exigent requirements of these robots. This paper describes the locomotioncontrol of a leg prototype, designed and developed to make a quadruped walk dynamically while exhibiting compliant interaction with the environment. The actuation system of the leg is based on the hybrid use of series elasticity and magneto-rheological dampers, which provide variable compliance for natural-looking motion and improved interaction with the ground. The locomotioncontrol architecture has been proposed to exploit natural leg dynamics in order to improve energy efficiency. Results show that the controller achieves a significant reduction in energy consumption during the leg swing phase thanks to the exploitation of inherent leg dynamics. Added to this, experiments with the real leg prototype show that the combined use of series elasticity and magneto-rheologicaldamping at the knee provide a 20 % reduction in the energy wasted in braking the knee during its extension in the leg stance phase

    State of the climate in 2013

    Get PDF
    In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved

    One sixth of Amazonian tree diversity is dependent on river floodplains

    Get PDF
    Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.Naturali

    Author Correction: One sixth of Amazonian tree diversity is dependent on river floodplains

    Get PDF

    Mapping density, diversity and species-richness of the Amazon tree flora

    Get PDF
    Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution

    Nutritional-chemical composition and antinutritional factors in seeds of Enterolobium cyclocarpum [Composición químico-nutricional y de factores antinutricionales en semillas de parota (Enterolobium cyclocarpum)]

    No full text
    Chemical analyses were performed to quantify the protein (CP), fat (CF), fiber (CF), ash, humidity, nitrogen free extract (NFE) and antinutritional factors in extracts from Enterolobium cyclo-carpum seeds. E. cyclocarpum seeds have a great potential in pharmaceutical and chemical industries due to the high content of minerals, carbohydrates and proteins. However, the seeds also contain cyanogenic glycosides such as trypsin inhibitory factor and cyanhidric acid, resulting in antinutritional effects. Trough enzymatic hydrolysis (β-glycosidase), trypsine inhibition on an aqueous extract of the sample (0.1 N NaOH). By using a standard trypsine solution, the proteolytic activity in a synthetic substrate (benzoyl-arginine-p-nitroanilide) was studied. Analyses of the complete seeds showed; CP 26.13%, CF 2.85%, CF 4.95%, Ash 2.95%, and NFE 63.1%. The dried almonds contained CP 34.5%, CF 7.6%, undetectable fiber, ash 3.3%, and NFE 54.6%. No hemaglutinins were detected, whereas 4.82 units/mg of trypsine inhibition and 0.76 mg/100g of HCN were found. The low concentrations of trypsine inhibitor and HCN will be reduced even more by the heat treatment previous consumption, which makes the seeds suitable for human beings or animals

    Characterization of Plasmid-Mediated Quinolone Resistance (PMQR) Genes in Extended-Spectrum ?-Lactamase-Producing Enterobacteriaceae Pediatric Clinical Isolates in Mexico

    No full text
    The present research contains the geographical references detailed by municipal including climatic characteristics, marginal areas, optimal and suboptimal areas where Jamaica as an alternative crop represents a viable option for the maintainable development of those regions with climatic limitations for other crops. Based on the reference data it is considered 125 humidity days as the optimal to develop the crop. In Jalisco 900,000 ha has been reported whit this condition within the nine climatic zones existing. " 2009 Asian Network for Scientific Information.",,,,,,"10.3923/ajps.2009.92.101",,,"http://hdl.handle.net/20.500.12104/40004","http://www.scopus.com/inward/record.url?eid=2-s2.0-67149094768&partnerID=40&md5=408e8aa09266da75a58e857bd9f325fe",,,,,,"2",,"Asian Journal of Plant Sciences",,"9

    Characterization of the climatic rankins for jamaica (Hibiscus sabdariffa L.) Crop in Jalisco, Mexico

    No full text
    The present research contains the geographical references detailed by municipal including climatic characteristics, marginal areas, optimal and suboptimal areas where Jamaica as an alternative crop represents a viable option for the maintainable development of those regions with climatic limitations for other crops. Based on the reference data it is considered 125 humidity days as the optimal to develop the crop. In Jalisco 900,000 ha has been reported whit this condition within the nine climatic zones existing. © 2009 Asian Network for Scientific Information

    Purification of Trypanosoma cruzi metacyclic trypomastigotes by ion exchange chromatography in sepharose-DEAE, a novel methodology for host-pathogen interaction studies

    No full text
    Metacyclic trypomastigotes are essential for the understanding of the biology of Trypanosoma cruzi, the agent of Chagas disease. However, obtaining these biological stages in axenic medium is difficult. Techniques based on charge and density of the parasite during different stages have been implemented, without showing a high efficiency in the purification of metacyclic trypomastigotes. So far, there is no protocol implemented where sepharose-DEAE is used as a resin. Therefore, herein we tested its ability to purify metacyclic trypomastigotes in Liver Infusion Triptose (LIT) medium cultures. A simple, easy-to-execute and effective protocol based on ion exchange chromatography on Sepharose-DEAE resin for the purification of T. cruzi trypomastigotes is described. T. cruzi strains from the Discrete Typing Units (DTUs) I and II were used. The strains were harvested in LIT medium at a concentration of 1 × 107 epimastigotes/mL. We calculated the time of trypomastigotes increment (TTI). Based on the data obtained, Ion exchange chromatography was performed with DEAE-sepharose resin. To verify the purity and viability of the trypomastigotes, a culture was carried out in LIT medium with subsequent verification with giemsa staining. To evaluate if the technique affected the infectivity of trypomastigotes, in vitro assays were performed in Vero cells and in vivo in ICR-CD1 mice. The technique allowed the purification of metacyclic trypomastigotes of other stages of T. cruzi in a percentage of 100%, a greater recovery was observed in cultures of 12 days. There were differences regarding the recovery of metacyclic trypomastigotes for both DTUs, being DTU TcI the one that recovered a greater amount of these forms. The technique did not affect parasite infectivity in vitro or/and in vivo. © 2017 Elsevier B.V
    corecore