46 research outputs found

    Molecular phylogeny of the subfamily Stevardiinae Gill, 1858 (Characiformes: Characidae): classification and the evolution of reproductive traits

    Get PDF
    Background: The subfamily Stevardiinae is a diverse and widely distributed clade of freshwater fishes from South and Central America, commonly known as “tetras” (Characidae). The group was named “clade A” when first proposed as a monophyletic unit of Characidae and later designated as a subfamily. Stevardiinae includes 48 genera and around 310 valid species with many species presenting inseminating reproductive strategy. No global hypothesis of relationships is available for this group and currently many genera are listed as incertae sedis or are suspected to be non-monophyletic. Results: We present a molecular phylogeny with the largest number of stevardiine species analyzed so far, including 355 samples representing 153 putative species distributed in 32 genera, to test the group’s monophyly and internal relationships. The phylogeny was inferred using DNA sequence data from seven gene fragments (mtDNA: 12S, 16S and COI; nuclear: RAG1, RAG2, MYH6 and PTR). The results support the Stevardiinae as a monophyletic group and a detailed hypothesis of the internal relationships for this subfamily. Conclusions: A revised classification based on the molecular phylogeny is proposed that includes seven tribes and also defines monophyletic genera, including a resurrected genus Eretmobrycon, and new definitions for Diapoma, Hemibrycon, Bryconamericus sensu stricto, and Knodus sensu stricto, placing some small genera as junior synonyms. Inseminating species are distributed in several clades suggesting that reproductive strategy is evolutionarily labile in this group of fishes

    Molecular and morphological evidence revalidates Acrobrycon tarijae (Characiformes, Characidae) and shows hidden diversity

    Get PDF
    We conducted a revision of the Neotropical genus Acrobrycon. A previous study synonymized the species, A. ipanquianus, distributed from the western portion of the Amazon River to the north-western region of the La Plata River Basin, and A. tarijae, with type locality in the Lipeo River in Bolivia. We revisited this result by collecting new morphometric, meristic, and genetic data (COI mitochondrial gene) for 24 individuals distributed along La Plata River Basin in Argentina, and discussed our results in the context of multiple biogeographic processes of isolation in that basin. Our results revealed a more complex history of diversification and geographic distribution across Acrobrycon species than previously suspected, probably associated with multiple biogeographic processes of isolation in La Plata River Basin. We present new evidence that led us to reconsider the validity of A. tarijae, which is distinguishable from A. ipanquianus by the number of vertebrae (37–39 vs. 41–42) and pleural ribs (12–13 vs. 14). These results were also supported by our molecular analyses that revealed a genetic divergence >4% between A. ipanquianus and A. tarijae. We also identified two main genetic clusters within A. tarijae: the first cluster consisted of specimens from the Bermejo, Pilcomayo, Itiyuro and Juramento river basins (northern Argentina); and the second cluster included specimens from the southernmost basins, such as the Salí River in Tucumán, Cuarto River in the province of Cordoba and the Quinto River in the province of San Luis. Our results suggest that the genetic structure observed in A. tarijae is the result of the type of drainage (endorheic vs. exorheic) and geographical distance.Fil: Briñoccoli, Yanina Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Bogan, Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Maimónides; Argentina. Fundación de Historia Natural Félix de Azara; ArgentinaFil: Arcila, Dahiana. Oklahoma State University; Estados UnidosFil: Rosso, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Mabragaña, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Delpiani, Sergio Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Díaz de Astarloa, Juan Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Cardoso, Yamila Paula. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data

    Get PDF
    Our understanding of phylogenetic relationships among bony fishes has been transformed by analysis of a small number of genes, but uncertainty remains around critical nodes. Genomescale inferences so far have sampled a limited number of taxa and genes. Here we leveraged 144 genomes and 159 transcriptomes to investigate fish evolution with an unparalleled scale of data: >0.5 Mb from 1,105 orthologous exon sequences from 303 species, representing 66 out of 72 ray-finned fish orders. We apply phylogenetic tests designed to trace the effect of whole-genome duplication events on gene trees and find paralogy-free loci using a bioinformatics approach. Genome-wide data support the structure of the fish phylogeny, and hypothesis-testing procedures appropriate for phylogenomic datasets using explicit gene genealogy interrogation settle some long-standing uncertainties, such as the branching order at the base of the teleosts and among early euteleosts, and the sister lineage to the acanthomorph and percomorph radiations. Comprehensive fossil calibrations date the origin of all major fish lineages before the end of the Cretaceous.Fil: Hughes, Lily C.. National Museum of Natural History; Estados Unidos. The George Washington University; Estados UnidosFil: Ortí, Guillermo. National Museum of Natural History; Estados Unidos. The George Washington University; Estados UnidosFil: Huang, Yu. Beijing Genomics Institute; China. Chinese Academy of Sciences; República de ChinaFil: Sun, Ying. China National Genebank; China. Beijing Genomics Institute; ChinaFil: Baldwin, Carole C.. National Museum of Natural History; Estados UnidosFil: Thompson, Andrew W.. National Museum of Natural History; Estados Unidos. The George Washington University; Estados UnidosFil: Arcila, Dahiana. National Museum of Natural History; Estados Unidos. The George Washington University; Estados UnidosFil: Betancur, Ricardo. National Museum of Natural History; Estados Unidos. Universidad de Puerto Rico, Recinto de Rio Piedras; Puerto RicoFil: Li, Chenhong. Shanghai Ocean University; ChinaFil: Becker, Leandro Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales.; Argentina. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche; ArgentinaFil: Bellora, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales.; Argentina. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche; ArgentinaFil: Zhao, Xiaomeng. Chinese Academy of Sciences; República de China. Beijing Genomics Institute; ChinaFil: Li, Xiaofeng. Chinese Academy of Sciences; República de China. Beijing Genomics Institute; ChinaFil: Wang, Min. Beijing Genomics Institute; ChinaFil: Fang, Chao. Chinese Academy of Sciences; República de ChinaFil: Xie, Bing. Bgi-shenzhen; ChinaFil: Zhoui, Zhuocheng. China Fisheries Association; ChinaFil: Huang, Hai. Hainan Tropical Ocean University; ChinaFil: Chen, Songlin. Yellow Sea Fisheries Research Institute Chinese Academy Of Fishery Science; ChinaFil: Venkatesh, Byrappa. A-star, Institute Of Molecular And Cell Biology;Fil: Shi, Qiong. Chinese Academy of Sciences; República de Chin

    Evolutionary determinism and convergence associated with water-column transitions in marine fishes

    Get PDF
    Repeatable, convergent outcomes are prima facie evidence for determinism in evolutionary processes. Among fishes, well-known examples include microevolutionary habitat transitions into the water column, where freshwater populations (e.g., sticklebacks, cichlids, and whitefishes) recurrently diverge toward slender-bodied pelagic forms and deep-bodied benthic forms. However, the consequences of such processes at deeper macroevolutionary scales in the marine environment are less clear. We applied a phylogenomics-based integrative, comparative approach to test hypotheses about the scope and strength of convergence in a marine fish clade with a worldwide distribution (snappers and fusiliers, family Lutjanidae) featuring multiple water-column transitions over the past 45 million years. We collected genome-wide exon data for 110 (∼80%) species in the group and aggregated data layers for body shape, habitat occupancy, geographic distribution, and paleontological and geological information. We also implemented approaches using genomic subsets to account for phylogenetic uncertainty in comparative analyses. Our results show independent incursions into the water column by ancestral benthic lineages in all major oceanic basins. These evolutionary transitions are persistently associated with convergent phenotypes, where deep-bodied benthic forms with truncate caudal fins repeatedly evolve into slender midwater species with furcate caudal fins. Lineage diversification and transition dynamics vary asymmetrically between habitats, with benthic lineages diversifying faster and colonizing midwater habitats more often than the reverse. Convergent ecological and functional phenotypes along the benthic–pelagic axis are pervasive among different lineages and across vastly different evolutionary scales, achieving predictable high-fitness solutions for similar environmental challenges, ultimately demonstrating strong determinism in fish body-shape evolution. This is a postprint of the published article.This research was supported by NSF grants DEB-1932759 and DEB-1929248 to R.B.-R., DEB-1457426 and DEB-1541554 to G.O., DEB-1541552 to C.C.B., and DEB-2015404 to D.A. M.R.-S. was supported by a postdoctoral fellowship from Colciencias (Grant 848-2019). Financial support was provided from the Office of the Vice President for Research and Partnerships and the Office of the Provost, University of Oklahoma.Ye

    Molecular phylogeny of the subfamily Stevardiinae Gill, 1858 (Characiformes: Characidae): classification and the evolution of reproductive traits

    Get PDF
    Abstract Background The subfamily Stevardiinae is a diverse and widely distributed clade of freshwater fishes from South and Central America, commonly known as “tetras” (Characidae). The group was named “clade A” when first proposed as a monophyletic unit of Characidae and later designated as a subfamily. Stevardiinae includes 48 genera and around 310 valid species with many species presenting inseminating reproductive strategy. No global hypothesis of relationships is available for this group and currently many genera are listed as incertae sedis or are suspected to be non-monophyletic. Results We present a molecular phylogeny with the largest number of stevardiine species analyzed so far, including 355 samples representing 153 putative species distributed in 32 genera, to test the group’s monophyly and internal relationships. The phylogeny was inferred using DNA sequence data from seven gene fragments (mtDNA: 12S, 16S and COI; nuclear: RAG1, RAG2, MYH6 and PTR). The results support the Stevardiinae as a monophyletic group and a detailed hypothesis of the internal relationships for this subfamily. Conclusions A revised classification based on the molecular phylogeny is proposed that includes seven tribes and also defines monophyletic genera, including a resurrected genus Eretmobrycon, and new definitions for Diapoma, Hemibrycon, Bryconamericus sensu stricto, and Knodus sensu stricto, placing some small genera as junior synonyms. Inseminating species are distributed in several clades suggesting that reproductive strategy is evolutionarily labile in this group of fishes.http://deepblue.lib.umich.edu/bitstream/2027.42/134621/1/12862_2015_Article_403.pd

    Supplementary information

    No full text
    Integrative evolutionary analyses that are based upon fossil and extant species provide a unique source of evidence for understanding past diversification events and for assessing the tempo of evolution across the Tree of Life. Herein, we demonstrate the importance of integrating fossil and extant species for inferring patterns of lineage diversification that would otherwise be masked in analyses that examine only one source of evidence

    Five new species of Hemibrycon (Characiformes: Characidae) from the Río Magdalena basin, Colombia

    No full text
    Five new fish species of the genus Hemibrycon are described from the Río Magdalena basin, Colombia, using morphometric, meristic and osteological characters. Hemibrycon paez (n=40) differs in number of lateral line scales (39 to 42 vs. 43 to 54), by the number of scales between lateral line and anal-fin origin (6 to 7 vs. 4 to 5) and between lateral line and dorsal-fin origin (6 to 7 vs. 8); H. quindos (n=66) distinguished from its congeners by one autopomorphy: Males with cartilaginous protuberance, rounded on the anal fin ray branched, along all rays (vs. cartilaginous protuberance not present on anal-fin rays in males), by the maxilla without a fold on its anterior end (vs. maxilla with folding only at posterior end), by the number of pored scales in the lateral line (35 to 40 vs. 40 to 46); H. raqueliae (n=117) distinguished by a widened first tooth on the maxilla with the remaining teeth decreasing sharply in size (vs. first tooth of maxilla slender, remaining teeth gradually diminishing), by the first maxilla tooth pentacuspid and wider than the others (vs. first tooth on maxilla unicuspid or tricuspid and of same size as the others); H. virolinica (n=34) distinguished by the posterior end of the extrascapular spine surpassing the postemporal (vs. posterior end of extrascapular not exceeding postemporal spine), by having the posterior end of the first proximal pteryigiophores of dorsal fin of the same size as the anterior edge (vs. the posterior end of the first proximal pteryigiophores of dorsal fin more elongated than the anterior edge); and H. yacopiae (n=78) is distinguished by the following autopomorphic characters: first laterosensorial infraorbitals canal in contact with the posterior end of antorbital (vs. laterosensorial canal not reaching posterior end of antorbital), by the tip of the supraoccipital spine widened (vs. supraoccipital spine acute), by the posterior end of ectopterygoids failing to come in contact with the quadrate bone (vs. in contact); by the posterior edge of palatine more widened than the anterior edge of ectopterygoids (vs. posterior edge of the palatine approximately the same size, except for H. paez)

    Electronic supplementary material from Mass extinction in tetraodontiform fishes linked to the Palaeocene Eocene thermal maximum

    No full text
    Integrative evolutionary analyses based upon fossil and extant species provide a powerful approach for understanding past diversification events and for assessing the tempo of evolution across the Tree of Life. Herein, we demonstrate the importance of integrating fossil and extant species for inferring patterns of lineage diversification that would otherwise be masked in analyses that examine only one source of evidence. We infer the phylogeny and macroevolutionary history of the Tetraodontiformes (triggerfishes, pufferfishes and allies), a group with one of the most extensive fossil records among fishes. Our analyses combine molecular and morphological data, based on an expanded matrix that adds newly coded fossil species and character states. Beyond confidently resolving the relationships and divergence times of tetraodontiforms, our diversification analyses detect a major mass-extinction event during the Palaeocene Eocene Thermal Maximum (PETM), followed by a marked increase in speciation rates. This pattern is consistently obtained when fossil and extant species are integrated, whereas examination of the fossil occurrences alone failed to detect major diversification changes during the PETM. When taking into account non-homogeneous models, our analyses also detect a rapid lineage diversification increase in one of the groups (tetraodontoids) during the middle Miocene, which is considered a key period in the evolution of reef fishes associated with trophic changes and ecological opportunity. In summary, our analyses show distinct diversification dynamics estimated from phylogenies and the fossil record, suggesting that different episodes shaped the evolution of tetraodontiforms during the Cenozoic

    Transcriptomic analysis of the Brazilian blind characid, Stygichthys typhlops, reveals convergent selection with Astyanax mexicanus and other cavefishes

    Get PDF
    Molecular studies have shown that Neotropical fishes of the order Characiformes have undergone two independent events of cave colonization. Among these fishes are the Mexican blind cavefish (Astyanax mexicanus), a well-studied model system for cave adaptation, and the lesser-known Brazilian blind characid (Stygichthys typhlops). Although various genomic and transcriptomic approaches have been used to identify genes responsible for cave adaptation in A. mexicanus, these genetic factors have not been explored in an evolutionary comparative framework in cave-adapted characiforms. To address this gap, we assembled a de novo transcriptome for the Brazilian blind characid, identifying 27,845 assembled unigenes, of which 22,580 were assigned as putative one-to-one orthologs to the Mexican cavefish. We then used the package RELAX to analyze 789 genes in cavefishes, identifying 311 genes under intensified or relaxed selection. Our analysis revealed 26 genes with signatures of convergent, relaxed selection linked to vision, circadian cycles, pigmentation, and hematopoiesis processes. Additionally, we conducted differential gene expression analyzes between the snout region and a control tissue sample (muscle), identifying 96 differentially expressed genes associated with cell-surface-bound and calcium-binding proteins. Our study offers insights into the genetic mechanisms underlying cave adaptation in characiform fishes, particularly the Brazilian blind characid. Moreover, our transcriptome dataset and list of genes under convergent, relaxed, and intensified selection serve as a valuable resource for future functional studies of genes involved in cave adaptation. Our work highlights the importance of examining genetic adaptations in multiple independent lineages to better understand the evolutionary processes underlying cave adaptation
    corecore