192 research outputs found

    The association between histamine 2 receptor antagonist use and Clostridium difficile infection: a systematic review and meta-analysis.

    Get PDF
    Background Clostridium difficile infection (CDI) is a major health problem. Epidemiological evidence suggests that there is an association between acid suppression therapy and development of CDI. Purpose We sought to systematically review the literature that examined the association between histamine 2 receptor antagonists (H2RAs) and CDI. Data source We searched Medline, Current Contents, Embase, ISI Web of Science and Elsevier Scopus from 1990 to 2012 for all analytical studies that examined the association between H2RAs and CDI. Study selection Two authors independently reviewed the studies for eligibility. Data extraction Data about studies characteristics, adjusted effect estimates and quality were extracted. Data synthesis Thirty-five observations from 33 eligible studies that included 201834 participants were analyzed. Studies were performed in 6 countries and nine of them were multicenter. Most studies did not specify the type or duration of H2RAs therapy. The pooled effect estimate was 1.44, 95% CI (1.22–1.7), I2 = 70.5%. This association was consistent across different subgroups (by study design and country) and there was no evidence of publication bias. The pooled effect estimate for high quality studies was 1.39 (1.15–1.68), I2 = 72.3%. Meta-regression analysis of 10 study-level variables did not identify sources of heterogeneity. In a speculative analysis, the number needed to harm (NNH) with H2RAs at 14 days after hospital admission in patients receiving antibiotics or not was 58, 95% CI (37, 115) and 425, 95% CI (267, 848), respectively. For the general population, the NNH at 1 year was 4549, 95% CI (2860, 9097). Conclusion In this rigorous systematic review and meta-analysis, we observed an association between H2RAs and CDI. The absolute risk of CDI associated with H2RAs is highest in hospitalized patients receiving antibiotics

    Accreting Millisecond X-Ray Pulsars

    Full text link
    Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories without parallel in the study of extreme physics. In this chapter we review the past fifteen years of discoveries in the field. We summarize the observations of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength observations that have been carried out since the discovery of the first AMXP in 1998. We review accretion torque theory, the pulse formation process, and how AMXP observations have changed our view on the interaction of plasma and magnetic fields in strong gravity. We also explain how the AMXPs have deepened our understanding of the thermonuclear burst process, in particular the phenomenon of burst oscillations. We conclude with a discussion of the open problems that remain to be addressed in the future.Comment: Review to appear in "Timing neutron stars: pulsations, oscillations and explosions", T. Belloni, M. Mendez, C.M. Zhang Eds., ASSL, Springer; [revision with literature updated, several typos removed, 1 new AMXP added

    Single cell genome analysis supports a link between phagotrophy and primary plastid endosymbiosis

    Get PDF
    Two cases of primary plastid endosymbiosis are known. The first occurred ca. 1.6 billion years ago and putatively gave rise to the canonical plastid in algae and plants. The second is restricted to a genus of rhizarian amoebae that includes Paulinella chromatophora. Photosynthetic Paulinella species gained their plastid from an α-cyanobacterial source and are sister to plastid-lacking phagotrophs such as Paulinella ovalis that ingest cyanobacteria. To study the role of feeding behavior in plastid origin, we analyzed single-cell genome assemblies from six P. ovalis-like cells isolated from Chesapeake Bay, USA. Dozens of contigs in these cell assemblies were derived from prey DNA of α-cyanobacterial origin and associated cyanophages. We found two examples of horizontal gene transfer (HGT) in P. ovalis-like nuclear DNA from cyanobacterial sources. This work suggests the first evidence of a link between feeding behavior in wild-caught cells, HGT, and plastid primary endosymbiosis in the monophyletic Paulinella lineage

    Characterization of Modular Bacteriophage Endolysins from Myoviridae Phages OBP, 201ϕ2-1 and PVP-SE1

    Get PDF
    Peptidoglycan lytic enzymes (endolysins) induce bacterial host cell lysis in the late phase of the lytic bacteriophage replication cycle. Endolysins OBPgp279 (from Pseudomonas fluorescens phage OBP), PVP-SE1gp146 (Salmonella enterica serovar Enteritidis phage PVP-SE1) and 201ϕ2-1gp229 (Pseudomonas chlororaphis phage 201ϕ2-1) all possess a modular structure with an N-terminal cell wall binding domain and a C-terminal catalytic domain, a unique property for endolysins with a Gram-negative background. All three modular endolysins showed strong muralytic activity on the peptidoglycan of a broad range of Gram-negative bacteria, partly due to the presence of the cell wall binding domain. In the case of PVP-SE1gp146, this domain shows a binding affinity for Salmonella peptidoglycan that falls within the range of typical cell adhesion molecules (Kaff = 1.26×106 M−1). Remarkably, PVP-SE1gp146 turns out to be thermoresistant up to temperatures of 90°C, making it a potential candidate as antibacterial component in hurdle technology for food preservation. OBPgp279, on the other hand, is suggested to intrinsically destabilize the outer membrane of Pseudomonas species, thereby gaining access to their peptidoglycan and exerts an antibacterial activity of 1 logarithmic unit reduction. Addition of 0.5 mM EDTA significantly increases the antibacterial activity of the three modular endolysins up to 2–3 logarithmic units reduction. This research work offers perspectives towards elucidation of the structural differences explaining the unique biochemical and antibacterial properties of OBPgp279, PVP-SE1gp146 and 201ϕ2-1gp229. Furthermore, these endolysins extensively enlarge the pool of potential antibacterial compounds used against multi-drug resistant Gram-negative bacterial infections

    Sm/Lsm Genes Provide a Glimpse into the Early Evolution of the Spliceosome

    Get PDF
    The spliceosome, a sophisticated molecular machine involved in the removal of intervening sequences from the coding sections of eukaryotic genes, appeared and subsequently evolved rapidly during the early stages of eukaryotic evolution. The last eukaryotic common ancestor (LECA) had both complex spliceosomal machinery and some spliceosomal introns, yet little is known about the early stages of evolution of the spliceosomal apparatus. The Sm/Lsm family of proteins has been suggested as one of the earliest components of the emerging spliceosome and hence provides a first in-depth glimpse into the evolving spliceosomal apparatus. An analysis of 335 Sm and Sm-like genes from 80 species across all three kingdoms of life reveals two significant observations. First, the eukaryotic Sm/Lsm family underwent two rapid waves of duplication with subsequent divergence resulting in 14 distinct genes. Each wave resulted in a more sophisticated spliceosome, reflecting a possible jump in the complexity of the evolving eukaryotic cell. Second, an unusually high degree of conservation in intron positions is observed within individual orthologous Sm/Lsm genes and between some of the Sm/Lsm paralogs. This suggests that functional spliceosomal introns existed before the emergence of the complete Sm/Lsm family of proteins; hence, spliceosomal machinery with considerably fewer components than today's spliceosome was already functional

    Distinct Gene Number-Genome Size Relationships for Eukaryotes and Non-Eukaryotes: Gene Content Estimation for Dinoflagellate Genomes

    Get PDF
    The ability to predict gene content is highly desirable for characterization of not-yet sequenced genomes like those of dinoflagellates. Using data from completely sequenced and annotated genomes from phylogenetically diverse lineages, we investigated the relationship between gene content and genome size using regression analyses. Distinct relationships between log10-transformed protein-coding gene number (Y′) versus log10-transformed genome size (X′, genome size in kbp) were found for eukaryotes and non-eukaryotes. Eukaryotes best fit a logarithmic model, Y′ = ln(-46.200+22.678X′, whereas non-eukaryotes a linear model, Y′ = 0.045+0.977X′, both with high significance (p<0.001, R2>0.91). Total gene number shows similar trends in both groups to their respective protein coding regressions. The distinct correlations reflect lower and decreasing gene-coding percentages as genome size increases in eukaryotes (82%–1%) compared to higher and relatively stable percentages in prokaryotes and viruses (97%–47%). The eukaryotic regression models project that the smallest dinoflagellate genome (3×106 kbp) contains 38,188 protein-coding (40,086 total) genes and the largest (245×106 kbp) 87,688 protein-coding (92,013 total) genes, corresponding to 1.8% and 0.05% gene-coding percentages. These estimates do not likely represent extraordinarily high functional diversity of the encoded proteome but rather highly redundant genomes as evidenced by high gene copy numbers documented for various dinoflagellate species

    A review of abnormalities in the perception of visual illusions in schizophrenia

    Get PDF
    Specific abnormalities of vision in schizophrenia have been observed to affect high-level and some low-level integration mechanisms, suggesting that people with schizophrenia may experience anomalies across different stages in the visual system affecting either early or late processing or both. Here, we review the research into visual illusion perception in schizophrenia and the issues which previous research has faced. One general finding that emerged from the literature is that those with schizophrenia are mostly immune to the effects of high-level illusory displays, but this effect is not consistent across all low-level illusions. The present review suggests that this resistance is due to the weakening of top–down perceptual mechanisms and may be relevant to the understanding of symptoms of visual distortion rather than hallucinations as previously thought

    Factors contributing to attrition behavior in diabetes self-management programs: A mixed method approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetes self-management education is a critical component in diabetes care. Despite worldwide efforts to develop efficacious DSME programs, high attrition rates are often reported in clinical practice. The objective of this study was to examine factors that may contribute to attrition behavior in diabetes self-management programs.</p> <p>Methods</p> <p>We conducted telephone interviews with individuals who had Type 2 diabetes (n = 267) and attended a diabetes education centre. Multivariable logistic regression was performed to identify factors associated with attrition behavior. Forty-four percent of participants (n = 118) withdrew prematurely from the program and were asked an open-ended question regarding their discontinuation of services. We used content analysis to code and generate themes, which were then organized under the Behavioral Model of Health Service Utilization.</p> <p>Results</p> <p>Working full and part-time, being over 65 years of age, having a regular primary care physician or fewer diabetes symptoms were contributing factors to attrition behaviour in our multivariable logistic regression. The most common reasons given by participants for attrition from the program were conflict between their work schedules and the centre's hours of operation, patients' confidence in their own knowledge and ability when managing their diabetes, apathy towards diabetes education, distance to the centre, forgetfulness, regular physician consultation, low perceived seriousness of diabetes, and lack of familiarity with the centre and its services. There was considerable overlap between our quantitative and qualitative results.</p> <p>Conclusion</p> <p>Reducing attrition behaviour requires a range of strategies targeted towards delivering convenient and accessible services, familiarizing individuals with these services, increasing communication between centres and their patients, and creating better partnerships between centres and primary care physicians.</p

    AglH, a thermophilic UDP‑<i>N</i>‑acetylglucosamine‑1‑phosphate:dolichyl phosphate GlcNAc‑1‑phosphotransferase initiating protein<i> N</i>‑glycosylation pathway in <i>Sulfolobus acidocaldarius</i>, is capable of complementing the eukaryal Alg7

    Get PDF
    AglH, a predicted UDP-GlcNAc-1-phosphate:dolichyl phosphate GlcNAc-1-phosphotransferase, is initiating the protein N-glycosylation pathway in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. AglH successfully replaced the endogenous GlcNAc-1-phosphotransferase activity of Alg7 in a conditional lethal Saccharomyces cerevisiae strain, in which the first step of the eukaryal protein N-glycosylation process was repressed. This study is one of the few examples of cross-domain complementation demonstrating a conserved polyprenyl phosphate transferase reaction within the eukaryal and archaeal domain like it was demonstrated for Methanococcus voltae (Shams-Eldin et al. 2008). The topology prediction and the alignment of the AglH membrane protein with GlcNAc-1-phosphotransferases from the three domains of life show significant conservation of amino acids within the different proposed cytoplasmic loops. Alanine mutations of selected conserved amino acids in the putative cytoplasmic loops II (D(100)), IV (F(220)) and V (F(264)) demonstrated the importance of these amino acids for cross-domain AlgH activity in in vitro complementation assays in S. cerevisiae. Furthermore, antibiotic treatment interfering directly with the activity of dolichyl phosphate GlcNAc-1-phosphotransferases confirmed the essentiality of N-glycosylation for cell survival

    The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing.

    Get PDF
    Microbial ecology is plagued by problems of an abstract nature. Cell sizes are so small and population sizes so large that both are virtually incomprehensible. Niches are so far from our everyday experience as to make their very definition elusive. Organisms that may be abundant and critical to our survival are little understood, seldom described and/or cultured, and sometimes yet to be even seen. One way to confront these problems is to use data of an even more abstract nature: molecular sequence data. Massive environmental nucleic acid sequencing, such as metagenomics or metatranscriptomics, promises functional analysis of microbial communities as a whole, without prior knowledge of which organisms are in the environment or exactly how they are interacting. But sequence-based ecological studies nearly always use a comparative approach, and that requires relevant reference sequences, which are an extremely limited resource when it comes to microbial eukaryotes. In practice, this means sequence databases need to be populated with enormous quantities of data for which we have some certainties about the source. Most important is the taxonomic identity of the organism from which a sequence is derived and as much functional identification of the encoded proteins as possible. In an ideal world, such information would be available as a large set of complete, well curated, and annotated genomes for all the major organisms from the environment in question. Reality substantially diverges from this ideal, but at least for bacterial molecular ecology, there is a database consisting of thousands of complete genomes from a wide range of taxa, supplemented by a phylogeny-driven approach to diversifying genomics [2]. For eukaryotes, the number of available genomes is far, far fewer, and we have relied much more heavily on random growth of sequence databases, raising the question as to whether this is fit for purpose
    corecore