324 research outputs found

    The COMPLETE Survey of Outflows in Perseus

    Get PDF
    We present a study on the impact of molecular outflows in the Perseus molecular cloud complex using the COMPLETE survey large-scale 12CO(1-0) and 13CO(1-0) maps. We used three-dimensional isosurface models generated in RA-DEC-Velocity space to visualize the maps. This rendering of the molecular line data allowed for a rapid and efficient way to search for molecular outflows over a large (~ 16 sq. deg.) area. Our outflow-searching technique detected previously known molecular outflows as well as new candidate outflows. Most of these new outflow-related high-velocity features lie in regions that have been poorly studied before. These new outflow candidates more than double the amount of outflow mass, momentum, and kinetic energy in the Perseus cloud complex. Our results indicate that outflows have significant impact on the environment immediately surrounding localized regions of active star formation, but lack the energy needed to feed the observed turbulence in the entire Perseus complex. This implies that other energy sources, in addition to protostellar outflows, are responsible for turbulence on a global cloud scale in Perseus. We studied the impact of outflows in six regions with active star formation within Perseus of sizes in the range of 1 to 4 pc. We find that outflows have enough power to maintain the turbulence in these regions and enough momentum to disperse and unbind some mass from them. We found no correlation between outflow strength and star formation efficiency for the six different regions we studied, contrary to results of recent numerical simulations. The low fraction of gas that potentially could be ejected due to outflows suggests that additional mechanisms other than cloud dispersal by outflows are needed to explain low star formation efficiencies in clusters.Comment: Published in The Astrophysical Journa

    Patient safety incident capture resulting from incident reports: a comparative observational analysis

    Get PDF
    BACKGROUND: Patient safety incident (PSI) discovery is an essential component of quality improvement. When submitted, incident reports may provide valuable opportunities for PSI discovery. However, little objective information is available to date to quantify or demonstrate this value. The objective of this investigation was to assess how often Emergency Department (ED) incident reports submitted by different sources led to the discovery of PSIs. METHODS: A standardized peer review process was implemented to evaluate all incident reports submitted to the ED. Findings of the peer review analysis were recorded prospectively in a quality improvement database. A retrospective analysis of the quality improvement database was performed to calculate the PSI capture rates for incident reports submitted by different source groups. RESULTS: 363 incident reports were analyzed over a period of 18 months; 211 were submitted by healthcare providers (HCPs) and 126 by non-HCPs. PSIs were identified in 108 resulting in an overall capture rate of 31%. HCP-generated reports resulted in a 44% capture rate compared to 10% for non-HCPs (p \u3c 0.001). There was no difference in PSI capture between sub-groups of HCPs and non-HCPs. CONCLUSION: HCP-generated ED incident reports were much more likely to capture PSIs than reports submitted by non-HCPs. However, HCP reports still led to PSI discovery less than half the time. Further research is warranted to develop effective strategies to improve the utility of incident reports from both HCPs and non-HCPs

    Emergency department patient safety incident characterization: an observational analysis of the findings of a standardized peer review process

    Get PDF
    BACKGROUND: Emergency Department (ED) care has been reported to be prone to patient safety incidents (PSIs). Improving our understanding of PSIs is essential to prevent them. A standardized, peer review process was implemented to identify and analyze ED PSIs. The primary objective of this investigation was to characterize ED PSIs identified by the peer review process. A secondary objective was to characterize PSIs that led to patient harm. In addition, we sought to provide a detailed description of the peer review process for others to consider as they conduct their own quality improvement initiatives. METHODS: An observational study was conducted in a large, urban, tertiary-care ED. Over a two-year period, all ED incident reports were investigated via a standardized, peer review process. PSIs were identified and analyzed for contributing factors including systems failures and practitioner-based errors. The classification system for factors contributing to PSIs was developed based on systems previously reported in the emergency medicine literature as well as the investigators\u27 experience in quality improvement and peer review. All cases in which a PSI was discovered were further adjudicated to determine if patient harm resulted. RESULTS: In 24 months, 469 cases were investigated, identifying 152 PSIs. In total, 188 systems failures and 96 practitioner-based errors were found to have contributed to the PSIs. In twelve cases, patient harm was determined to have resulted from PSIs. Systems failures were identified in eleven of the twelve cases in which a PSI resulted in patient harm. CONCLUSION: Systems failures were almost twice as likely as practitioner-based errors to contribute to PSIs, and systems failures were present in the majority of cases resulting in patient harm. To effectively reduce PSIs, ED quality improvement initiatives should focus on systems failure reduction

    Spitzer mapping of molecular hydrogen pure rotational lines in NGC 1333: A detailed study of feedback in star formation

    Full text link
    We present mid-infrared spectral maps of the NGC 1333 star forming region, obtained with the the Infrared Spectrometer on board the Spitzer Space Telescope. Eight pure H2 rotational lines, from S (0) to S (7), are detected and mapped. The H2 emission appears to be associated with the warm gas shocked by the multiple outflows present in the region. A comparison between the observed intensities and the predictions of detailed shock models indicates that the emission arises in both slow (12 - 24 km/s) and fast (36 - 53 km/s) C-type shocks with an initial ortho-to-para ratio of ~ 1. The present H2 ortho-to-para ratio exhibits a large degree of spatial variations. In the post-shocked gas, it is usually about 2, i.e. close to the equilibrium value (~ 3). However, around at least two outflows, we observe a region with a much lower (~ 0.5) ortho-to-para ratio. This region probably corresponds to gas which has been heated-up recently by the passage of a shock front, but whose ortho-to-para has not reached equilibrium yet. This, together with the low initial ortho-to-para ratio needed to reproduce the observed emission, provide strong evidence that H2 is mostly in para form in cold molecular clouds. The H2 lines are found to contribute to 25 - 50% of the total outflow luminosity, and thus can be used to ascertain the importance of star formation feedback on the natal cloud. From these lines, we determine the outflow mass loss rate and, indirectly, the stellar infall rate, the outflow momentum and the kinetic energy injected into the cloud over the embedded phase. The latter is found to exceed the binding energy of individual cores, suggesting that outflows could be the main mechanism for core disruption.Comment: Accepted for publication in the Astrophysical Journa

    UBVRI Light Curves of 44 Type Ia Supernovae

    Get PDF
    We present UBVRI photometry of 44 type-Ia supernovae (SN Ia) observed from 1997 to 2001 as part of a continuing monitoring campaign at the Fred Lawrence Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics. The data set comprises 2190 observations and is the largest homogeneously observed and reduced sample of SN Ia to date, nearly doubling the number of well-observed, nearby SN Ia with published multicolor CCD light curves. The large sample of U-band photometry is a unique addition, with important connections to SN Ia observed at high redshift. The decline rate of SN Ia U-band light curves correlates well with the decline rate in other bands, as does the U-B color at maximum light. However, the U-band peak magnitudes show an increased dispersion relative to other bands even after accounting for extinction and decline rate, amounting to an additional ~40% intrinsic scatter compared to B-band.Comment: 84 authors, 71 pages, 51 tables, 10 figures. Accepted for publication in the Astronomical Journal. Version with high-res figures and electronic data at http://astron.berkeley.edu/~saurabh/cfa2snIa

    Mass Assembly of Stellar Systems and Their Evolution with the SMA (MASSES)-Full Data Release

    Get PDF
    We present and release the full dataset for the Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES) survey. This survey used the Submillimeter Array (SMA) to image the 74 known protostars within the Perseus molecular cloud. The SMA was used in two array configurations to capture outflows for scales >>30â€Čâ€Č^{\prime\prime} (>>9000 au) and to probe scales down to ∌\sim1â€Čâ€Č^{\prime\prime} (∌\sim300 au). The protostars were observed with the 1.3 mm and 850 ÎŒ\mum receivers simultaneously to detect continuum at both wavelengths and molecular line emission from CO(2-1), 13^{13}CO(2-1), C18^{18}O(2-1), N2_2D+^+(3-2), CO(3-2), HCO+^+(4-3), and H13^{13}CO+^+(4-3). Some of the observations also used the SMA's recently upgraded correlator, SWARM, whose broader bandwidth allowed for several more spectral lines to be observed (e.g., SO, H2_2CO, DCO+^+, DCN, CS, CN). Of the main continuum and spectral tracers observed, 84% of the images and cubes had emission detected. The median C18^{18}O(2-1) linewidth is ∌\sim1.0 km s−1^{-1}, which is slightly higher than those measured with single-dish telescopes at scales of 3000-20000 au. Of the 74 targets, six are suggested to be first hydrostatic core candidates, and we suggest that L1451-mm is the best candidate. We question a previous continuum detection toward L1448 IRS2E. In the SVS13 system, SVS13A certainly appears to be the most evolved source, while SVS13C appears to be hotter and more evolved than SVS13B. The MASSES survey is the largest publicly available interferometric continuum and spectral line protostellar survey to date, and is largely unbiased as it only targets protostars in Perseus. All visibility (uvuv) data and imaged data are publicly available at https://dataverse.harvard.edu/dataverse/full_MASSES/.Comment: Accepted to ApJ

    Informing the development of Australia's national eating disorders research and translation strategy : a rapid review methodology

    Get PDF
    Background Eating disorders (EDs) are highly complex mental illnesses associated with significant medical complications. There are currently knowledge gaps in research relating to the epidemiology, aetiology, treatment, burden, and outcomes of eating disorders. To clearly identify and begin addressing the major deficits in the scientific, medical, and clinical understanding of these mental illnesses, the Australian Government Department of Health in 2019 funded the InsideOut Institute (IOI) to develop the Australian Eating Disorder Research and Translation Strategy, the primary aim of which was to identify priorities and targets for building research capacity and outputs. A series of rapid reviews (RR) were conducted to map the current state of knowledge, identify evidence gaps, and inform development of the national research strategy. Published peer-reviewed literature on DSM-5 listed EDs, across eight knowledge domains was reviewed: (1) population, prevalence, disease burden, Quality of Life in Western developed countries; (2) risk factors; (3) co-occurring conditions and medical complications; (4) screening and diagnosis; (5) prevention and early intervention; (6) psychotherapies and relapse prevention; (7) models of care; (8) pharmacotherapies, alternative and adjunctive therapies; and (9) outcomes (including mortality). While RRs are systematic in nature, they are distinct from systematic reviews in their aim to gather evidence in a timely manner to support decision-making on urgent or high-priority health concerns at the national level. Results Three medical science databases were searched as the primary source of literature for the RRs: Science Direct, PubMed and OVID (Medline). The search was completed on 31st May 2021 (spanning January 2009-May 2021). At writing, a total of 1,320 articles met eligibility criteria and were included in the final review. Conclusions For each RR, the evidence has been organised to review the knowledge area and identify gaps for further research and investment. The series of RRs (published separately within the current series) are designed to support the development of research and translation practice in the field of EDs. They highlight areas for investment and investigation, and provide researchers, service planners and providers, and research funders rapid access to quality current evidence, which has been synthesised and organised to assist decision-making

    Mammal responses to global changes in human activity vary by trophic group and landscape

    Get PDF
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence.Peer reviewe

    B∗^{*} production in Z decays at LEP

    Get PDF
    • 

    corecore