8 research outputs found

    Simultaneous production of gaseous and liquid biofuels from the synergetic co-valorisation of bio-oil and crude glycerol in supercritical water

    Get PDF
    This work addresses the co-valorisation in supercritical water of bio-oil obtained from the fast pyrolysis of wood and crude glycerol yielded as a by-product during biodiesel production. The experiments were conducted at 380¿°C and 230¿bar for 30¿min with a Ni-Co/Al-Mg catalyst, analysing the effects on the process of the catalyst loading (0–0.25¿g catalyst/g organics) and feed composition (each material alone and all possible binary mixtures). The yields to gas, upgraded bio-oil (liquid) and solid varied as follows: 4–87%, 0–46% and 0–18%, respectively. A synergistic interaction between crude glycerol and bio-oil took place during the upgrading process, which allowed the complete and simultaneous transformation of both materials into gas and liquid bio-fuels with a negligible solid formation. The compositions of the gas and the upgraded liquid can be easy tailored by adjusting the catalyst amount and the composition of the feed. The gas phase was made up of H2 (7–49¿vol.%), CO2 (31–56¿vol.), CO (0–7¿vol.%) and CH4 (6–57¿vol.%) and had a Lower Heating Value (LHV) ranging from 8 to 22¿MJ/m3 STP. The upgraded bio-oil consisted of a mixture of carboxylic acids (0–73%), furans (0–7%), phenols (0–85%), ketones (0–22%) and cyclic compounds (0–53%). The proportions of C, H and O in the liquid shifted between 66–77¿wt.%, 7–11¿wt.% and 15–25¿wt.%, respectively, while its Higher Heating Value (HHV) ranged from 29 to 34¿MJ/kg. An optimum for the simultaneous production of gas and liquid bio-fuels was achieved with a solution having equal amounts of each material and employing a catalyst amount of 0.25¿g catalyst/g organics. Under such conditions, 37% of the bio-oil was transformed into an upgraded liquid having a HHV (32¿MJ/kg) two times higher than the original material (16¿MJ/kg) with a negligible solid formation; the rest of the bio-oil and all the crude glycerol being converted into a rich CH4 (55¿vol.%) biogas with a high LHV (21¿MJ/m3 STP). This represents a step-change in future energy production and can help to establish the basis for a more efficient and sustainable biomass valorisation

    Localized magnetic moments in metallic SrB6 single crystals

    No full text
    The specific heat [Formula: see text] of metallic SrB6 single crystals shows an anomalous behavior for [Formula: see text] K which varies strongly with an applied magnetic field. This is consistent with a two-level Schottky system. We ascribe the excess of [Formula: see text] in this temperature range to localized magnetic moments. In addition, features that are attributable to a partial ferromagnetic polarization of a conduction electron gas are observed. These results are supported by magnetization measurements and are compatible with the transport properties reported previously (Stankiewicz 2016 Phys. Rev. B 94 125141).We acknowledge support from grant MAT2015-73914-JIN, from the Ministerio de EconomĂ­a y Competividad of Spain. P F S R acknowledges support from the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project number 20160085DR. Work by L.C. was supported by the U.S. DOE, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.Peer reviewe

    Association Between Use of Enhanced Recovery After Surgery Protocol and Postoperative Complications in Total Hip and Knee Arthroplasty in the Postoperative Outcomes Within Enhanced Recovery After Surgery Protocol in Elective Total Hip and Knee Arthroplasty Study (POWER2)

    No full text
    [Importance] The Enhanced Recovery After Surgery (ERAS) care protocol has been shown to improve outcomes compared with traditional care in certain types of surgery.[Objective] To assess the association of use of the ERAS protocols with complications in patients undergoing elective total hip arthroplasty (THA) and total knee arthroplasty (TKA).[Design, Setting, and Participants] This multicenter, prospective cohort study included patients recruited from 131 centers in Spain from October 22 through December 22, 2018. All consecutive adults scheduled for elective THA or TKA were eligible for inclusion. Patients were stratified between those treated in a self-designated ERAS center (ERAS group) and those treated in a non-ERAS center (non-ERAS group). Data were analyzed from June 15 through September 15, 2019.[Exposures] Total hip or knee arthroplasty and perioperative management. Sixteen individual ERAS items were assessed in all included patients, whether they were treated at a center that was part of an established ERAS protocol or not.[Main Outcomes and Measures] The primary outcome was postoperative complications within 30 days after surgery. Secondary outcomes included length of stay and mortality.[Results] During the 2-month recruitment period, 6146 patients were included (3580 women [58.2%]; median age, 71 [interquartile range (IQR), 63-76] years). Of these, 680 patients (11.1%) presented with postoperative complications. No differences were found in the number of patients with overall postoperative complications between ERAS and non-ERAS groups (163 [10.2%] vs 517 [11.4%]; odds ratio [OR], 0.89; 95% CI, 0.74-1.07; P = .22). Fewer patients in the ERAS group had moderate to severe complications (73 [4.6%] vs 279 [6.1%]; OR, 0.74; 95% CI, 0.56-0.96; P = .02). The median overall adherence rate with the ERAS protocol was 50.0% (IQR, 43.8%-62.5%), with the rate for ERAS facilities being 68.8% (IQR, 56.2%-81.2%) vs 50.0% (IQR, 37.5%-56.2%) at non-ERAS centers (P < .001). Among the patients with the highest and lowest quartiles of adherence to ERAS components, the patients with the highest adherence had fewer overall postoperative complications (144 [10.6%] vs 270 [13.0%]; OR, 0.80; 95% CI, 0.64-0.99; P < .001) and moderate to severe postoperative complications (59 [4.4%] vs 143 [6.9%]; OR, 0.62; 95% CI, 0.45-0.84; P < .001) and shorter median length of hospital stay (4 [IQR, 3-5] vs 5 [IQR, 4-6] days; OR, 0.97; 95% CI, 0.96-0.99; P < .001).[Conclusions and Relevance] An increase in adherence to the ERAS program was associated with a decrease in postoperative complications, although only a few ERAS items were individually associated with improved outcomes.This study was supported by institutional and/or departmental sources. The Postoperative Outcomes Within Enhanced Recovery After Surgery Protocol in Elective Total Hip and Knee Arthroplasty (POWER2) study was supported by the Spanish Perioperative Audit and Research Network (REDGERM

    Association Between Use of Enhanced Recovery After Surgery Protocol and Postoperative Complications in Total Hip and Knee Arthroplasty in the Postoperative Outcomes Within Enhanced Recovery After Surgery Protocol in Elective Total Hip and Knee Arthroplasty Study (POWER2).

    No full text
    The Enhanced Recovery After Surgery (ERAS) care protocol has been shown to improve outcomes compared with traditional care in certain types of surgery. To assess the association of use of the ERAS protocols with complications in patients undergoing elective total hip arthroplasty (THA) and total knee arthroplasty (TKA). This multicenter, prospective cohort study included patients recruited from 131 centers in Spain from October 22 through December 22, 2018. All consecutive adults scheduled for elective THA or TKA were eligible for inclusion. Patients were stratified between those treated in a self-designated ERAS center (ERAS group) and those treated in a non-ERAS center (non-ERAS group). Data were analyzed from June 15 through September 15, 2019. Total hip or knee arthroplasty and perioperative management. Sixteen individual ERAS items were assessed in all included patients, whether they were treated at a center that was part of an established ERAS protocol or not. The primary outcome was postoperative complications within 30 days after surgery. Secondary outcomes included length of stay and mortality. During the 2-month recruitment period, 6146 patients were included (3580 women [58.2%]; median age, 71 [interquartile range (IQR), 63-76] years). Of these, 680 patients (11.1%) presented with postoperative complications. No differences were found in the number of patients with overall postoperative complications between ERAS and non-ERAS groups (163 [10.2%] vs 517 [11.4%]; odds ratio [OR], 0.89; 95% CI, 0.74-1.07; P = .22). Fewer patients in the ERAS group had moderate to severe complications (73 [4.6%] vs 279 [6.1%]; OR, 0.74; 95% CI, 0.56-0.96; P = .02). The median overall adherence rate with the ERAS protocol was 50.0% (IQR, 43.8%-62.5%), with the rate for ERAS facilities being 68.8% (IQR, 56.2%-81.2%) vs 50.0% (IQR, 37.5%-56.2%) at non-ERAS centers (P  An increase in adherence to the ERAS program was associated with a decrease in postoperative complications, although only a few ERAS items were individually associated with improved outcomes

    Fungal planet description sheets: 625-715

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Australia:Apiognomonia lasiopetali on Lasiopetalum sp Blastacervulus eucalyptorum on Eucalyptus adesmophloia,Bullanockia australis (incl. Bullanockia gen. nov.) on Kingia australis, Caliciopsis eucalypti on Eucalyptus marginata, Celerioriella petrophiles on Petrophile teretifolia, Coleophoma xanthosiae on Xanthosia rotundifolia, Coniothyrium hakeae on Hakea sp Diatrypella banksiae on Banksia formosa, Disculoides corymbiae on Corymbia calophylla, ElsinoĂ« eelemani on Melaleuca alternifolia, ElsinoĂ« eucalyptigena onEucalyptus kingsmillii, ElsinoĂ« preissianae on Eucalyptus preissiana, Eucasphaeria rustici on Eucalyptus creta, Hyweljonesia queenslandica (incl. Hyweljonesia gen. nov.) on the cocoon of an unidentified microlepidoptera, Mycodiella eucalypti (incl. Mycodiella gen. nov.) on Eucalyptus diversicolor,Myrtapenidiella sporadicae on Eucalyptus sporadica, Neocrinula xanthorrhoeae (incl. Neocrinula gen. nov.) on Xanthorrhoea sp, Ophiocordyceps nooreniae on dead ant, Phaeosphaeriopsis agavacearum on Agavesp, Phlogicylindrium mokarei on Eucalyptus sp, Phyllosticta acaciigena on Acacia suaveolens,Pleurophoma acaciae on Acacia glaucoptera, Pyrenochaeta hakeae on Hakea sp, Readeriella lehmannii onEucalyptus lehmannii, Saccharata banksiae on Banksia grandis, Saccharata daviesiae on Daviesia pachyphylla, Saccharata eucalyptorum on Eucalyptus bigalerita, Saccharata hakeae on Hakea baxteri,Saccharata hakeicola on Hakea victoria, Saccharata lambertiae on Lambertia ericifolia, Saccharata petrophiles on Petrophile sp, Saccharata petrophilicola on Petrophile fastigiata, Sphaerellopsis hakeae onHakea sp, and Teichospora kingiae on Kingia australis. Brazil: Adautomilanezia caesalpiniae (incl. Adautomilanezia gen. nov.) on Caesalpina echinata, Arthrophiala arthrospora (incl. Arthrophiala gen. nov.) on Sagittaria montevidensis, Diaporthe caatingaensis (endophyte from Tacinga inamoena), Geastrum ishikawae on sandy soil, Geastrum pusillipilosum on soil, Gymnopus pygmaeus on dead leaves and sticks,Inonotus hymenonitens on decayed angiosperm trunk, Pyricularia urashimae on Urochloa brizantha, andSynnemellisia aurantia on Passiflora edulis. Chile: Tubulicrinis australis on Lophosoria quadripinnata.France: Cercophora squamulosa from submerged wood, and Scedosporium cereisporum from fluids of a wastewater treatment plant. Hawaii: Beltraniella acaciae, Dactylaria acaciae, Rhexodenticula acaciae,Rubikia evansii and Torula acaciae (all on Acacia koa). India: Lepidoderma echinosporum on dead semi-woody stems, and Rhodocybe rubrobrunnea from soil. Iran: Talaromyces kabodanensis from hypersaline soil.La RĂ©union: Neocordana musarum from leaves of Musa sp. Malaysia: Anungitea eucalyptigena onEucalyptus grandis × pellita, Camptomeriphila leucaenae (incl. Camptomeriphila gen. nov.) on Leucaena leucocephala, Castanediella communis on Eucalyptus pellita, Eucalyptostroma eucalypti (incl.Eucalyptostroma gen. nov.) on Eucalyptus pellita, Melanconiella syzygii on Syzygium sp, Mycophilomyces periconiae (incl. Mycophilomyces gen. nov.) as hyperparasite on Periconia on leaves of Albizia falcataria,Synnemadiella eucalypti (incl. Synnemadiella gen. nov.) on Eucalyptus pellita, and Teichospora nephelii onNephelium lappaceum. Mexico: Aspergillus bicephalus from soil. New Zealand: Aplosporella sophorae onSophora microphylla, Libertasomyces platani on Platanus sp, Neothyronectria sophorae (incl.Neothyronectria gen. nov.) on Sophora microphylla, Parastagonospora phoenicicola on Phoenix canariensis, Phaeoacremonium pseudopanacis on Pseudopanax crassifolius, Phlyctema phoenicis onPhoenix canariensis, and Pseudoascochyta novae-zelandiae on Cordyline australis. Panama: Chalara panamensis from needle litter of Pinus cf. caribaea. South Africa: Exophiala eucalypti on leaves ofEucalyptus sp, Fantasmomyces hyalinus (incl. Fantasmomyces gen. nov.) on Acacia exuvialis,Paracladophialophora carceris (incl. Paracladophialophora gen. nov.) on Aloe sp, and Umthunziomyces hagahagensis (incl. Umthunziomyces gen. nov.) on Mimusops caffra. Spain: Clavaria griseobrunnea on bare ground in Pteridium aquilinum field, Cyathus ibericus on small fallen branches of Pinus halepensis, Gyroporus pseudolacteus in humus of Pinus pinaster, and Pseudoascochyta pratensis (incl. Pseudoascochyta gen. nov.) from soil. Thailand: Neoascochyta adenii on Adenium obesum, and Ochroconis capsici on Capsicum annuum. UK: Fusicolla melogrammae from dead stromata of Melogramma campylosporum on bark ofCarpinus betulus. Uruguay: Myrmecridium pulvericola from house dust. USA: Neoscolecobasidium agapanthi (incl. Neoscolecobasidium gen. nov.) on Agapanthus sp, Polyscytalum purgamentum on leaf litter,Pseudopithomyces diversisporus from human toenail, Saksenaea trapezispora from knee wound of a soldier, and Sirococcus quercus from Quercus sp. Morphological and culture characteristics along with DNA barcodes are provided. © 2017 Naturalis Biodiversity Center & Westerdijk Fungal Biodiversity Institute

    Notes for genera – Ascomycota

    No full text
    Knowledge of the relationships and thus the classification of fungi, has developed rapidly with increasingly widespread use of molecular techniques, over the past 10--15 years, and continues to accelerate. Several genera have been found to be polyphyletic, and their generic concepts have subsequently been emended. New names have thus been introduced for species which are phylogenetically distinct from the type species of particular genera. The ending of the separate naming of morphs of the same species in 2011, has also caused changes in fungal generic names. In order to facilitate access to all important changes, it was desirable to compile these in a single document. The present article provides a list of generic names of Ascomycota (approximately 6500 accepted names published to the end of 2016), including those which are lichen-forming. Notes and summaries of the changes since the last edition of `Ainsworth Bisby's Dictionary of the Fungi' in 2008 are provided. The notes include the number of accepted species, classification, type species (with location of the type material), culture availability, life-styles, distribution, and selected publications that have appeared since 2008. This work is intended to provide the foundation for updating the ascomycete component of the ``Without prejudice list of generic names of Fungi'' published in 2013, which will be developed into a list of protected generic names. This will be subjected to the XIXth International Botanical Congress in Shenzhen in July 2017 agreeing to a modification in the rules relating to protected lists, and scrutiny by procedures determined by the Nomenclature Committee for Fungi (NCF). The previously invalidly published generic names Barriopsis, Collophora (as Collophorina), Cryomyces, Dematiopleospora, Heterospora (as Heterosporicola), Lithophila, Palmomyces (as Palmaria) and Saxomyces are validated, as are two previously invalid family names, Bartaliniaceae and Wiesneriomycetaceae. Four species of Lalaria, which were invalidly published are transferred to Taphrina and validated as new combinations. Catenomycopsis Tibell Constant. is reduced under Chaenothecopsis Vain., while Dichomera Cooke is reduced under Botryosphaeria Ces. De Not. (Art. 59)
    corecore