13 research outputs found

    Validation of ATP bioluminescence as a tool to assess antimicrobial effects of mouthrinses in an in vitro subgingival-biofilm model

    Get PDF
    Objectives. The aim of this investigation was to evaluate whether the adenosine triphosphate (ATP) bioluminescence method is an appropriate tool to assess the efficacy of antiseptic mouthrinses in terms of quantitative reductions of total viable microbial counts in mixed biofilm populations in vitro. Study Design. Three mouthrinses, containing respectively, chlorhexidine and cetylpyridinium chloride (CHX/CPC), essential oils (EO) and amine fluoride/stannous fluoride (AFSF), as well as Phosphate Buffered Saline (PBS) used as control, were tested in an in vitro static biofilm model by ATP bioluminescence and compared to culture method. Biofilms were grown on saliva-coated hydroxyapatite disks for 72 hours and then exposed for 1 minute to the mouthrinse or control by immersion. The antibacterial effect of the rinses was tested by analysis of variance. The reliability of the ATP bioluminescence method was assessed by calculating the Pearson correlation coefficients when compared to the viable cell counts obtained by culture. Results. Using ATP bioluminescence, the antimicrobial activity of the tested mouthrinses was demonstrated when compared to the PBS control. The ATP bioluminescence values were significantly correlated (0.769, p<0.001) to the viable cell counts. CHX/CPC and AFSF showed similar antimicrobial activity, although AFSF had a less homogeneous effect, being both more effective than the EO rinse. Conclusion. ATP bioluminescence viability testing may be considered a useful tool to assess the in vitro efficacy of antibacterial compounds. In the proposed model, CHX/CPC and AFSF containing mouthrinses demonstrated superior antimicrobial activity, as compared to EO rinses, in a multispecies biofilm model

    The ybiT Gene of Erwinia chrysanthemi Codes for a Putative ABC Transporter and Is Involved in Competitiveness against Endophytic Bacteria during Infection

    No full text
    We investigated the role in bacterial infection of a putative ABC transporter, designated ybiT, of Erwinia chrysanthemi AC4150. The deduced sequence of this gene showed amino acid sequence similarity with other putative ABC transporters of gram-negative bacteria, such as Escherichia coli and Pseudomonas aeruginosa, as well as structural similarity with proteins of Streptomyces spp. involved in resistance to macrolide antibiotics. The gene contiguous to ybiT, designated as pab (putative antibiotic biosynthesis) showed sequence similarity with Pseudomonas and Streptomyces genes involved in the biosynthesis of antibiotics. A ybiT mutant (BT117) was constructed by marker exchange. It retained full virulence in potato tubers and chicory leaves, but it showed reduced ability to compete in planta against the wild-type strain or against selected saprophytic bacteria. These results indicate that the ybiT gene plays a role in the in planta fitness of the bacteria

    Strategies to Combat Caries by Maintaining the Integrity of Biofilm and Homeostasis during the Rapid Phase of Supragingival Plaque Formation

    No full text
    Bacteria in the oral cavity, including commensals and opportunistic pathogens, are organized into highly specialized sessile communities, coexisting in homeostasis with the host under healthy conditions. A dysbiotic environment during biofilm evolution, however, allows opportunistic pathogens to become the dominant species at caries-affected sites at the expense of health-associated taxa. Combining tooth brushing with dentifrices or rinses combat the onset of caries by partially removes plaque, but resulting in the biofilm remaining in an immature state with undesirables&rsquo; consequences on homeostasis and oral ecosystem. This leads to the need for therapeutic pathways that focus on preserving balance in the oral microbiota and applying strategies to combat caries by maintaining biofilm integrity and homeostasis during the rapid phase of supragingival plaque formation. Adhesion, nutrition, and communication are fundamental in this phase in which the bacteria that have survived these adverse conditions rebuild and reorganize the biofilm, and are considered targets for designing preventive strategies to guide the biofilm towards a composition compatible with health. The present review summarizes the most important advances and future prospects for therapies based on the maintenance of biofilm integrity and homeostasis as a preventive measure of dysbiosis focused on these three key factors during the rapid phase of plaque formation

    Gene expression of Porphyromonas gingivalis ATCC 33277 when growing in an in vitro multispecies biofilm.

    No full text
    Background and objectivePorphyromonas gingivalis, an oral microorganism residing in the subgingival biofilm, may exert diverse pathogenicity depending on the presence of specific virulence factors, but its gene expression has not been completely established. This investigation aims to compare the transcriptomic profile of this pathogen when growing within an in vitro multispecies biofilm or in a planktonic state.Materials and methodsP. gingivalis ATCC 33277 was grown in anaerobiosis within multi-well culture plates at 37°C under two conditions: (a) planktonic samples (no hydroxyapatite discs) or (b) within a multispecies-biofilm containing Streptococcus oralis, Actinomyces naeslundii, Veillonella parvula, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans deposited on hydroxyapatite discs. Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM) combined with Fluorescence In Situ Hybridization (FISH) were used to verify the formation of the biofilm and the presence of P. gingivalis. Total RNA was extracted from both the multispecies biofilm and planktonic samples, then purified and, with the use of a microarray, its differential gene expression was analyzed. A linear model was used for determining the differentially expressed genes using a filtering criterion of two-fold change (up or down) and a significance p-value of ResultsSEM verified the development of the multispecies biofilm and FISH confirmed the incorporation of P. gingivalis. The microarray demonstrated that, when growing within the multispecies biofilm, 19.1% of P. gingivalis genes were significantly and differentially expressed (165 genes were up-regulated and 200 down-regulated), compared with planktonic growth. These genes were mainly involved in functions related to the oxidative stress, cell envelope, transposons and metabolism. The results of the microarray were confirmed by RT-qPCR.ConclusionSignificant transcriptional changes occurred in P. gingivalis when growing in a multispecies biofilm compared to planktonic state

    Comparative gene expression analysis of planktonic Porphyromonas gingivalis ATCC 33277 in the presence of a growing biofilm versus planktonic cells

    No full text
    Abstract Background Porphyromonas gingivalis, a microorganism residing in the oral cavity within complex multispecies biofilms, is one of the keystone pathogens in the onset and progression of periodontitis. In this in vitro study, using DNA microarray, we investigate the differential gene expression of Porphyromonas gingivalis ATCC 33277 when growing in the presence or in absence of its own monospecies biofilm. Results Approximately 1.5% of genes (28 out of 1909 genes, at 1.5 fold change or more, p-value < 0.05) were differentially expressed by P. gingivalis cells when in the presence of a biofilm. These genes were predominantly related to the metabolism of iron, bacterial adhesion, invasion, virulence and quorum-sensing system. The results from microarrays were consistent with those obtained by RT-qPCR. Conclusion This study provides insight on the transcriptional changes of planktonic P. gingivalis cells when growing in the presence of a biofilm. The resulting phenotypes provide information on changes occurring in the gene expression of this pathogen

    <i>Aggregatibacter actinomycetemcomitans</i> Growth in Biofilm versus Planktonic State: Differential Expression of Proteins

    No full text
    <i>Aggregatibacter actinomycetemcomitans (Aa)</i> is a pathogenic bacterium residing in the subgingival plaque biofilm strongly associated with the pathogenesis of periodontitis. The aim of this investigation was to study the protein differential expression of <i>Aa</i> when growing on biofilm compared with planktonic state using proteomic analysis by the 2D-DIGE system. Eighty-seven proteins were differentially expressed during biofilm growth (1.5-fold, <i>p</i> < 0.05), with 13 overexpressed and 37 down-expressed. Those repressed were mainly proteins involved in metabolism, biosynthesis, and transport. The overexpressed proteins were outer membrane proteins (OMPs) and highly immunogenic proteins such as YaeT (OMP), FtsZ, OMP39, OMP18/16, the chaperone GroEL, OMPA, adenylate kinase (Adk), and dihydrolipoamide acetyltransferase. The enrichment fractions of the OMPs from biofilm and planktonic states were obtained, and these proteins were analyzed by Western blotting with human serum from a periodontitis patient and one healthy control. These immunogenic proteins overexpressed in the biofilm may represent candidate virulence factors

    Metataxonomic and metabolomic evidence of biofilm homeostasis disruption related to caries: An in vitro study

    Get PDF
    The ecological dysbiosis of a biofilm includes not only bacterial changes but also changes in their metabolism. Related to oral biofilms, changes in metabolic activity are crucial endpoint, linked directly to the pathogenicity of oral diseases. Despite the advances in caries research, detailed microbial and metabolomic etiology is yet to be fully clarified. To advance this knowledge, a meta-taxonomic approach based on 16S rRNA gene sequencing and an untargeted metabolomic approach based on an ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry analysis (UHPLC/Q-TOF-MS) were conducted. To this end, an in vitro biofilm model derived from the saliva of healthy participants were developed, under commensal and cariogenic conditions by adding sucrose as the disease trigger. The cariogenic biofilms showed a significant increase of Firmicutes phyla (p = 0.019), due to the significant increase in the genus Streptococcus (p = 0.010), and Fusobacter (p 2 and FDR < 0.05). Forty-two metabolites were significantly higher in abundance in the cariogenic biofilms, whereas 17 metabolites were associated significantly with the commensal biofilms, principally related protein metabolism, with peptides and amino acids as protagonists, latter represented by histidine, arginine, l-methionine, glutamic acid, and phenylalanine derivatives

    Proteomics Unravels Extracellular Vesicles as Carriers of Classical Cytoplasmic Proteins in <i>Candida albicans</i>

    No full text
    The commensal fungus <i>Candida albicans</i> secretes a considerable number of proteins and, as in different fungal pathogens, extracellular vesicles (EVs) have also been observed. Our report contains the first proteomic analysis of EVs in <i>C. albicans</i> and a comparative proteomic study of the soluble secreted proteins. With this purpose, cell-free culture supernatants from <i>C. albicans</i> were separated into EVs and EV-free supernatant and analyzed by LC–MS/MS. A total of 96 proteins were identified including 75 and 61 proteins in EVs and EV-free supernatant, respectively. Out of these, 40 proteins were found in secretome by proteomic analysis for the first time. The soluble proteins were enriched in cell wall and secreted pathogenesis related proteins. Interestingly, more than 90% of these EV-free supernatant proteins were classical secretory proteins with predicted N-terminal signal peptide, whereas all the leaderless proteins involved in metabolism, including some moonlighting proteins, or in the exocytosis and endocytosis process were exclusively cargo of the EVs. We propose a model of the different mechanisms used by <i>C. albicans</i> secreted proteins to reach the extracellular medium. Furthermore, we tested the potential of the Bgl2 protein, identified in vesicles and EV-free supernatant, to protect against a systemic candidiasis in a murine model
    corecore