16 research outputs found

    Deletion of the glucagon receptor gene before and after experimental diabetes reveals differential protection from hyperglycemia

    No full text
    Objective: Mice with congenital loss of the glucagon receptor gene (Gcgr−/− mice) remain normoglycemic in insulinopenic conditions, suggesting that unopposed glucagon action is the driving force for hyperglycemia in Type-1 Diabetes Mellitus (T1DM). However, chronic loss of GCGR results in a neomorphic phenotype that includes hormonal signals with hypoglycemic activity. We combined temporally-controlled GCGR deletion with pharmacological treatments to dissect the direct contribution of GCGR signaling to glucose control in a common mouse model of T1DM. Methods: We induced experimental T1DM by injecting the beta-cell cytotoxin streptozotocin (STZ) in mice with congenital or temporally-controlled Gcgr loss-of-function using tamoxifen (TMX). Results: Disruption of Gcgr expression, using either an inducible approach in adult mice or animals with congenital knockout, abolished the response to a long-acting Gcgr agonist. Mice with either developmental Gcgr disruption or inducible deletion several weeks before STZ treatment maintained normoglycemia. However, mice with inducible knockout of the Gcgr one week after the onset of STZ diabetes had only partial correction of hyperglycemia, an effect that was reversed by GLP-1 receptor blockade. Mice with Gcgr deletion for either 2 or 6 weeks had similar patterns of gene expression, although the changes were generally larger with longer GCGR knockout. Conclusions: These findings demonstrate that the effects of glucagon to mitigate diabetic hyperglycemia are not through acute signaling but require compensations that take weeks to develop. Keywords: Glucagon, GCGR, GLP-1R, Insulin, Tamoxifen, Diabete

    Gene expression profiling of formalin-fixed, paraffin-embedded familial breast tumours using the whole genome-DASL assay

    No full text
    Tissue sample acquisition is a limiting step in many studies. There are many thousands of formalin-fixed, paraffin-embedded archival blocks collected around the world, but in contrast relatively few fresh frozen samples in tumour banks. Once samples are fixed in formalin, the RNA is degraded and traditional methods for gene expression profiling are not suitable. In this study, we have evaluated the ability of the whole genome DASL (cDNA-mediated Annealing, Selection, extension, and Ligation) assay from Illumina to perform transcriptomic analysis of archived breast tumour tissue in formalin-fixed, paraffin-embedded (FFPE) blocks. We profiled 76 familial breast tumours from cases carrying a BRCA1, BRCA2 or ATM mutation, or from non-BRCA1/2 families. We found that replicate samples correlated well with each other (r(2) = 0.9-0.98). In 12/15 cases, the matched formalin-fixed and frozen samples predicted the same tumour molecular subtypes with confidence. These results demonstrate that the whole genome DASL assay is a valuable tool to profile degraded RNA from archival FFPE material. This assay will enable transcriptomic analysis of a large number of archival samples that are stored in pathology archives around the globe and consequently will have the potential to improve our understanding and characterization of many diseases. Copyright (C) 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd

    Analysis of Varicella-Zoster Virus in Temporal Arteries Biopsy Positive and Negative for Giant Cell Arteritis.

    No full text
    To access publisher's full text version of this article click on the hyperlink at the bottom of the pageGiant cell arteritis (GCA) is the most common systemic vasculitis in elderly individuals. Diagnosis is confirmed by temporal artery (TA) biopsy, although biopsy results are often negative. Despite the use of corticosteroids, disease may progress. Identification of causal agents will improve outcomes. Biopsy-positive GCA is associated with TA infection by varicella-zoster virus (VZV).To analyze VZV infection in TAs of patients with clinically suspected GCA whose TAs were histopathologically negative and in normal TAs removed post mortem from age-matched individuals.A cross-sectional study for VZV antigen was performed from January 2013 to March 2015 using archived, deidentified, formalin-fixed, paraffin-embedded GCA-negative, GCA-positive, and normal TAs (50 sections/TA) collected during the past 30 years. Regions adjacent to those containing VZV were examined by hematoxylin-eosin staining. Immunohistochemistry identified inflammatory cells and cell types around nerve bundles containing VZV. A combination of 17 tertiary referral centers and private practices worldwide contributed archived TAs from individuals older than 50 years.Presence and distribution of VZV antigen in TAs and histopathological changes in sections adjacent to those containing VZV were confirmed by 2 independent readers.Varicella-zoster virus antigen was found in 45 of 70 GCA-negative TAs (64%), compared with 11 of 49 normal TAs (22%) (relative risk [RR] = 2.86; 95% CI, 1.75-5.31; P < .001). Extension of our earlier study revealed VZV antigen in 68 of 93 GCA-positive TAs (73%), compared with 11 of 49 normal TAs (22%) (RR = 3.26; 95% CI, 2.03-5.98; P < .001). Compared with normal TAs, VZV antigen was more likely to be present in the adventitia of both GCA-negative TAs (RR = 2.43; 95% CI, 1.82-3.41; P < .001) and GCA-positive TAs (RR = 2.03; 95% CI, 1.52-2.86; P < .001). Varicella-zoster virus antigen was frequently found in perineurial cells expressing claudin-1 around nerve bundles. Of 45 GCA-negative participants whose TAs contained VZV antigen, 1 had histopathological features characteristic of GCA, and 16 (36%) showed adventitial inflammation adjacent to viral antigen; no inflammation was seen in normal TAs.In patients with clinically suspected GCA, prevalence of VZV in their TAs is similar independent of whether biopsy results are negative or positive pathologically. Antiviral treatment may confer additional benefit to patients with biopsy-negative GCA treated with corticosteroids, although the optimal antiviral regimen remains to be determined.National Institutes of Health/AG032958 EY0636
    corecore