78 research outputs found

    Development of novel adenoviral vectors to overcome challenges observed with HAdV-5 based constructs

    Get PDF
    Recombinant vectors based on human adenovirus serotype 5 (HAdV-5) have been extensively studied in pre-clinical models and clinical trials over the last two decades. However, the thorough understanding of the HAdV-5 interaction with human subjects has uncovered major concerns about its product applicability. High vector-associated toxicity and widespread pre-existing immunity have been shown to significantly impede the effectiveness of HAdV-5 mediated gene transfer. It is therefore that the in depth knowledge attained working on HAdV-5 is currently being used to develop alternative vectors. Here, we provide a comprehensive overview of data obtained in recent years disqualifying the HAdV-5 vector for systemic gene delivery as well as novel strategies being pursued to overcome the limitations observed with particular emphasis on the ongoing vectorization efforts to obtain vectors based on alternative serotypes

    Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages

    Get PDF
    ABSTRACT The scavenger receptor MARCO is expressed in several subsets of naive tissue-resident macrophages and has been shown to participate in the recognition of various bacterial pathogens. However, the role of MARCO in antiviral defense is largely unexplored. Here, we investigated whether MARCO might be involved in the innate sensing of infection with adenovirus and recombinant adenoviral vectors by macrophages, which elicit vigorous immune responses in vivo. Using cells derived from mice, we show that adenovirus infection is significantly more efficient in MARCO-positive alveolar macrophages (AMs) and in AM-like primary macrophage lines (Max Planck Institute cells) than in MARCO-negative bone marrow-derived macrophages. Using antibodies blocking ligand binding to MARCO, as well as gene-deficient and MARCO-transfected cells, we show that MARCO mediates the rapid adenovirus transduction of macrophages. By enhancing adenovirus infection, MARCO contributes to efficient innate virus recognition through the cytoplasmic DNA sensor cGAS. This leads to strong proinflammatory responses, including the production of interleukin-6 (IL-6), alpha/beta interferon, and mature IL-1α. These findings contribute to the understanding of viral pathogenesis in macrophages and may open new possibilities for the development of tools to influence the outcome of infection with adenovirus or adenovirus vectors. IMPORTANCE Macrophages play crucial roles in inflammation and defense against infection. Several macrophage subtypes have been identified with differing abilities to respond to infection with both natural adenoviruses and recombinant adenoviral vectors. Adenoviruses are important respiratory pathogens that elicit vigorous innate responses in vitro and in vivo. The cell surface receptors mediating macrophage type-specific adenovirus sensing are largely unknown. The scavenger receptor MARCO is expressed on some subsets of naive tissue-resident macrophages, including lung alveolar macrophages. Its role in antiviral macrophage responses is largely unexplored. Here, we studied whether the differential expression of MARCO might contribute to the various susceptibilities of macrophage subtypes to adenovirus. We demonstrate that MARCO significantly enhances adenovirus infection and innate responses in macrophages. These results help to understand adenoviral pathogenesis and may open new possibilities to influence the outcome of infection with adenoviruses or adenovirus vectors. IMPORTANCE Macrophages play crucial roles in inflammation and defense against infection. Several macrophage subtypes have been identified with differing abilities to respond to infection with both natural adenoviruses and recombinant adenoviral vectors. Adenoviruses are important respiratory pathogens that elicit vigorous innate responses in vitro and in vivo. The cell surface receptors mediating macrophage type-specific adenovirus sensing are largely unknown. The scavenger receptor MARCO is expressed on some subsets of naive tissue-resident macrophages, including lung alveolar macrophages. Its role in antiviral macrophage responses is largely unexplored. Here, we studied whether the differential expression of MARCO might contribute to the various susceptibilities of macrophage subtypes to adenovirus. We demonstrate that MARCO significantly enhances adenovirus infection and innate responses in macrophages. These results help to understand adenoviral pathogenesis and may open new possibilities to influence the outcome of infection with adenoviruses or adenovirus vectors.</jats:p

    Adenoviruses in Lymphocytes of the Human Gastro-Intestinal Tract

    Get PDF
    Objective: Persistent adenoviral shedding in stools is known to occur past convalescence following acute adenoviral infections. We wished to establish the frequency with which adenoviruses may colonize the gut in normal human subjects. Methods: The presence of adenoviral DNA in intestinal specimens obtained at surgery or autopsy was tested using a nested PCR method. The amplified adenoviral DNA sequences were compared to each other and to known adenoviral species. Lamina propria lymphocytes (LPLs) were isolated from the specimens and the adenoviral copy numbers in the CD4+ and CD8+ fractions were determined by quantitative PCR. Adenoviral gene expression was tested by amplification of adenoviral mRNA. Results: Intestinal tissue from 21 of 58 donors and LPLs from 21 of 24 donors were positive for the presence of adenoviral DNA. The majority of the sequences could be assigned to adenoviral species E, although species B and C sequences were also common. Multiple sequences were often present in the same sample. Forty-one non-identical sequences were identified from 39 different tissue donors. Quantitative PCR for adenoviral DNA in CD4+ and CD8+ fractions of LPLs showed adenoviral DNA to be present in both cell types and ranged from a few hundred to several million copies per million cells on average. Active adenoviral gene expression as evidenced by the presence of adenoviral messenger RNA in intestinal lymphocytes was demonstrated in 9 of the 11 donors tested

    Antiviral and Neuroprotective Role of Octaguanidinium Dendrimer-Conjugated Morpholino Oligomers in Japanese Encephalitis

    Get PDF
    Japanese encephalitis (JE) is caused by a flavivirus that is transmitted to humans by mosquitoes belonging to the Culex sp. The threat of JE looms over a vast geographical realm, encompassing approximately 10 billion people. The disease is feared because currently there are no specific antiviral drugs available. There have been reports where other investigators have shown that agents that block viral replication can be used as effective therapeutic countermeasures. Vivo-Morpholinos (MOs) are synthetically produced analogs of DNA or RNA that can be modified to bind with specific targeted regions in a genome. In this study the authors propose that in an animal model of JE, MOs specifically designed to bind with specific region of JE virus (JEV) genome, blocks virus production in cells of living organisms. This results in reduced mortality of infected animals. As the major target of JEV is the nerve cells, analysis of brain of experimental animals, post treatment with MOs, showed neuroprotection. Studies in cultured cells were also supportive of the antiviral role of the MOs. The potent anti-sense effect in animals and lack of obvious toxicity at the effective dosage make these MOs good research reagents with future therapeutic applications in JE

    Nasal Delivery of an Adenovirus-Based Vaccine Bypasses Pre-Existing Immunity to the Vaccine Carrier and Improves the Immune Response in Mice

    Get PDF
    Pre-existing immunity to human adenovirus serotype 5 (Ad5) is common in the general population. Bypassing pre-existing immunity could maximize Ad5 vaccine efficacy. Vaccination by the intramuscular (I.M.), nasal (I.N.) or oral (P.O.) route with Ad5 expressing Ebola Zaire glycoprotein (Ad5-ZGP) fully protected naïve mice against lethal challenge with Ebola. In the presence of pre-existing immunity, only mice vaccinated I.N. survived. The frequency of IFN-γ+ CD8+ T cells was reduced by 80% and by 15% in animals vaccinated by the I.M. and P.O. routes respectively. Neutralizing antibodies could not be detected in serum from either treatment group. Pre-existing immunity did not compromise the frequency of IFN-γ+ CD8+ T cells (3.9±1% naïve vs. 3.6±1% pre-existing immunity, PEI) nor anti-Ebola neutralizing antibody (NAB, 40±10 reciprocal dilution, both groups). The number of INF-γ+ CD8+ cells detected in bronchioalveolar lavage fluid (BAL) after I.N. immunization was not compromised by pre-existing immunity to Ad5 (146±14, naïve vs. 120±16 SFC/million MNCs, PEI). However, pre-existing immunity reduced NAB levels in BAL by ∼25% in this group. To improve the immune response after oral vaccination, the Ad5-based vaccine was PEGylated. Mice given the modified vaccine did not survive challenge and had reduced levels of IFN-γ+ CD8+ T cells 10 days after administration (0.3±0.3% PEG vs. 1.7±0.5% unmodified). PEGylation did increase NAB levels 2-fold. These results provide some insight about the degree of T and B cell mediated immunity necessary for protection against Ebola virus and suggest that modification of the virus capsid can influence the type of immune response elicited by an Ad5-based vaccine

    Pre-Clinical Evaluation of a Replication-Competent Recombinant Adenovirus Serotype 4 Vaccine Expressing Influenza H5 Hemagglutinin

    Get PDF
    Influenza virus remains a significant health and social concern in part because of newly emerging strains, such as avian H5N1 virus. We have developed a prototype H5N1 vaccine using a recombinant, replication-competent Adenovirus serotype 4 (Ad4) vector, derived from the U.S. military Ad4 vaccine strain, to express the hemagglutinin (HA) gene from A/Vietnam/1194/2004 influenza virus (Ad4-H5-Vtn). Our hypothesis is that a mucosally-delivered replicating Ad4-H5-Vtn recombinant vector will be safe and induce protective immunity against H5N1 influenza virus infection and disease pathogenesis.The Ad4-H5-Vtn vaccine was designed with a partial deletion of the E3 region of Ad4 to accommodate the influenza HA gene. Replication and growth kinetics of the vaccine virus in multiple human cell lines indicated that the vaccine virus is attenuated relative to the wild type virus. Expression of the HA transgene in infected cells was documented by flow cytometry, western blot analysis and induction of HA-specific antibody and cellular immune responses in mice. Of particular note, mice immunized intranasally with the Ad4-H5-Vtn vaccine were protected against lethal H5N1 reassortant viral challenge even in the presence of pre-existing immunity to the Ad4 wild type virus.Several non-clinical attributes of this vaccine including safety, induction of HA-specific humoral and cellular immunity, and efficacy were demonstrated using an animal model to support Phase 1 clinical trial evaluation of this new vaccine

    Development of novel adenoviral vectors to overcome challenges observed with HAdV-5-based constructs

    Get PDF
    Recombinant vectors based on human adenovirus serotype 5 (HAdV-5) have been extensively studied in pre-clinical models and clinical trials over the last two decades. However, the thorough understanding of the HAdV-5 interaction with human subjects has uncovered major concerns about its product applicability. High vector-associated toxicity and widespread pre-existing immunity have been shown to significantly impede the effectiveness of HAdV-5 mediated gene transfer. It is therefore that the in depth knowledge attained working on HAdV-5 is currently being used to develop alternative vectors. Here, we provide a comprehensive overview of data obtained in recent years disqualifying the HAdV-5 vector for systemic gene delivery as well as novel strategies being pursued to overcome the limitations observed with particular emphasis on the ongoing vectorization efforts to obtain vectors based on alternative serotypes
    • …
    corecore