36 research outputs found

    The transitional gap transient AT 2018hso: new insights into the luminous red nova phenomenon

    Get PDF
    Context. The absolute magnitudes of luminous red novae (LRNe) are intermediate between those of novae and supernovae (SNe), and show a relatively homogeneous spectro-photometric evolution. Although they were thought to derive from core instabilities in single stars, there is growing support for the idea that they are triggered by binary interaction that possibly ends with the merging of the two stars. Aims. AT 2018hso is a new transient showing transitional properties between those of LRNe and the class of intermediate-luminosity red transients (ILRTs) similar to SN 2008S. Through the detailed analysis of the observed parameters, our study supports that it actually belongs to the LRN class and was likely produced by the coalescence of two massive stars. Methods. We obtained ten months of optical and near-infrared photometric monitoring, and 11 epochs of low-resolution optical spectroscopy of AT 2018hso. We compared its observed properties with those of other ILRTs and LRNe. We also inspected the archival Hubble Space Telescope (HST) images obtained about 15 years ago to constrain the progenitor properties. Results. The light curves of AT 2018hso show a first sharp peak (reddening-corrected M-r = -13.93 mag), followed by a broader and shallower second peak that resembles a plateau in the optical bands. The spectra dramatically change with time. Early-time spectra show prominent Balmer emission lines and a weak [Ca II] doublet, which is usually observed in ILRTs. However, the strong decrease in the continuum temperature, the appearance of narrow metal absorption lines, the great change in the H alpha strength and profile, and the emergence of molecular bands support an LRN classification. The possible detection of a M-I similar to -8 mag source at the position of AT 2018hso in HST archive images is consistent with expectations for a pre-merger massive binary, similar to the precursor of the 2015 LRN in M101. Conclusions. We provide reasonable arguments to support an LRN classification for AT 2018hso. This study reveals growing heterogeneity in the observables of LRNe than has been thought previously, which is a challenge for distinguishing between LRNe and ILRTs. This suggests that the entire evolution of gap transients needs to be monitored to avoid misclassifications

    Uptake and subcellular distribution of radiolabeled polymersomes for radiotherapy

    Get PDF
    Polymersomes have the potential to be applied in targeted alpha radionuclide therapy, while in addition preventing release of recoiling daughter isotopes. In this study, we investigated the cellular uptake, post uptake processing and intracellular localization of polymersomes. Methods: High-content microscopy was used to validate polymersome uptake kinetics. Confocal (live cell) microscopy was used to elucidate the uptake mechanism and DNA damage induction. Intracellular distribution of polymersomes in 3-D was determined using super-resolution microscopy. Results: We found that altering polymersome size and concentration affects the initial uptake and overall uptake capacity; uptake efficiency and eventual plateau levels varied between cell lines;

    Elucidating the Influence of Tumor Presence on the Polymersome Circulation Time in Mice

    Get PDF
    The use of nanoparticles as tumor-targeting agents is steadily increasing, and the influence of nanoparticle characteristics such as size and stealthiness have been established for a large number of nanocarrier systems. However, not much is known about the impact of tumor presence on nanocarrier circulation times. This paper reports on the influence of tumor presence on the in vivo circulation time and biodistribution of polybutadiene-polyethylene oxide (PBd-PEO) polymersomes. For thi

    Nivolumab versus docetaxel in previously treated advanced non-small-cell lung cancer (CheckMate 017 and CheckMate 057): 3-year update and outcomes in patients with liver metastases

    Get PDF
    Abstract Background Long-term data with immune checkpoint inhibitors in non-small-cell lung cancer (NSCLC) are limited. Two phase III trials demonstrated improved overall survival (OS) and a favorable safety profile with the anti-programmed death-1 antibody nivolumab versus docetaxel in patients with previously treated advanced squamous (CheckMate 017) and nonsquamous (CheckMate 057) NSCLC. We report results from ≥3 years' follow-up, including subgroup analyses of patients with liver metastases, who historically have poorer prognosis among patients with NSCLC. Patients and methods Patients were randomized 1 : 1 to nivolumab (3 mg/kg every 2 weeks) or docetaxel (75 mg/m2 every 3 weeks) until progression or discontinuation. The primary end point of each study was OS. Patients with baseline liver metastases were pooled across studies by treatment for subgroup analyses. Results After 40.3 months' minimum follow-up in CheckMate 017 and 057, nivolumab continued to show an OS benefit versus docetaxel: estimated 3-year OS rates were 17% [95% confidence interval (CI), 14% to 21%] versus 8% (95% CI, 6% to 11%) in the pooled population with squamous or nonsquamous NSCLC. Nivolumab was generally well tolerated, with no new safety concerns identified. Of 854 randomized patients across both studies, 193 had baseline liver metastases. Nivolumab resulted in improved OS compared with docetaxel in patients with liver metastases (hazard ratio, 0.68; 95% CI, 0.50–0.91), consistent with findings from the overall pooled study population (hazard ratio, 0.70; 95% CI, 0.61–0.81). Rates of treatment-related hepatic adverse events (primarily grade 1–2 liver enzyme elevations) were slightly higher in nivolumab-treated patients with liver metastases (10%) than in the overall pooled population (6%). Conclusions After 3 years' minimum follow-up, nivolumab continued to demonstrate an OS benefit versus docetaxel in patients with advanced NSCLC. Similarly, nivolumab demonstrated an OS benefit versus docetaxel in patients with liver metastases, and remained well tolerated. Clinical trial registration CheckMate 017: NCT01642004; CheckMate 057: NCT01673867

    Luminous Red Novae: Stellar Mergers or Giant Eruptions?

    Get PDF
    We present extensive datasets for a class of intermediate-luminosity optical transients known as luminous red novae. They show double-peaked light curves, with an initial rapid luminosity rise to a blue peak (at -13 to -15 mag), which is followed by a longer-duration red peak that sometimes is attenuated, resembling a plateau. The progenitors of three of them (NGC 4490-2011OT1, M 101-2015OT1, and SNhunt248), likely relatively massive blue to yellow stars, were also observed in a pre-eruptive stage when their luminosity was slowly increasing. Early spectra obtained during the first peak show a blue continuum with superposed prominent narrow Balmer lines, with P Cygni profiles. Lines of Fe II are also clearly observed, mostly in emission. During the second peak, the spectral continuum becomes much redder, H alpha is barely detected, and a forest of narrow metal lines is observed in absorption. Very late-time spectra (similar to 6 months after blue peak) show an extremely red spectral continuum, peaking in the infrared (IR) domain. H alpha is detected in pure emission at such late phases, along with broad absorption bands due to molecular overtones (such as TiO, VO). We discuss a few alternative scenarios for luminous red novae. Although major instabilities of single massive stars cannot be definitely ruled out, we favour a common envelope ejection in a close binary system, with possibly a final coalescence of the two stars. The similarity between luminous red novae and the outburst observed a few months before the explosion of the Type IIn SN 2011ht is also discussed

    Physical Processes in Star Formation

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio

    Notas Breves

    Get PDF
    corecore