118 research outputs found

    Hidden semi-Markov-switching quantile regression for time series

    Get PDF
    A hidden semi-Markov-switching quantile regression model is introduced as an extension of the hidden Markov-switching one. The proposed model allows for arbitrary sojourn-time distributions in the states of the Markov-switching chain. Parameters estimation is carried out via maximum likelihood estimation method using the Asymmetric Laplace distribution. As a by product of the model specification, the formulae and methods for forecasting, the state prediction, decoding and model checking that exist for ordinary hidden Markov-switching models can be applied to the proposed model. A simulation study to investigate the behaviour of the proposed model is performed covering several experimental settings. The empirical analysis studies the relationship between the stock index from the emerging market of China and those from the advanced markets, and investigates the determinants of high levels of pollution in an Italian small city.publishedVersio

    Quantile hidden semi-Markov models for multivariate time series

    Get PDF
    This paper develops a quantile hidden semi-Markov regression to jointly estimate multiple quantiles for the analysis of multivariate time series. The approach is based upon the Multivariate Asymmetric Laplace (MAL) distribution, which allows to model the quantiles of all univariate conditional distributions of a multivariate response simultaneously, incorporating the correlation structure among the outcomes. Unobserved serial heterogeneity across observations is modeled by introducing regime-dependent parameters that evolve according to a latent finite-state semi-Markov chain. Exploiting the hierarchical representation of the MAL, inference is carried out using an efficient Expectation-Maximization algorithm based on closed form updates for all model parameters, without parametric assumptions about the states’ sojourn distributions. The validity of the proposed methodology is analyzed both by a simulation study and through the empirical analysis of air pollutant concentrations in a small Italian city

    Skew mixture models for loss distributions: a Bayesian approach

    Get PDF
    The derivation of loss distribution from insurance data is a very interesting research topic but at the same time not an easy task. To find an analytic solution to the loss distribution may be mislading although this approach is frequently adopted in the actuarial literature. Moreover, it is well recognized that the loss distribution is strongly skewed with heavy tails and present small, medium and large size claims which hardly can be fitted by a single analytic and parametric distribution. Here we propose a finite mixture of Skew Normal distributions that provides a better characterization of insurance data. We adopt a Bayesian approach to estimate the model, providing the likelihood and the priors for the all unknow parameters; we implement an adaptive Markov Chain Monte Carlo algorithm to approximate the posterior distribution. We apply our approach to a well known Danish fire loss data and relevant risk measures, as Value-at-Risk and Expected Shortfall probability, are evaluated as well

    Role of Intracellular and Extracellular Annexin A1 in MIA PaCa-2 Spheroids Formation and Drug Sensitivity

    Get PDF
    Simple Summary In order to improve the investigation of pancreatic cancer (PC), often supported through analyzes two-dimensional (2D) cell monolayers, we proposed to create a spheroid-based in vitro three-dimensional (3D) model using wild-type (WT) and ANXA1 knock-out (KO) MIA PaCa-2 PC cells. However, the production of spheroids still represents a technical challenge. Here, we have developed a protocol to obtain well-organized spheroids and have proved that Annexin A1 (ANXA1) affects the spheroid formation, because the WT cells have a greater ability to form this 3D model when compared to the ANXA1 KO examples. We also investigated how ANXA1 action could influence the PC pharmacological response both in basal conditions and by mimicking a tumor system through the addition of autocrine EVs. ANXA1, via EVs, significantly improves the formation, the stability and the drug resistance of this model, particularly compared to the ANXA1 KO one, which shows a structural instability and a greater drug sensitivity. Among solid tumors, pancreatic cancer (PC) remains a leading cause of death. In PC, the protein ANXA1 has been identified as an oncogenic factor acting in an autocrine/paracrine way, and also as a component of tumor-deriving extracellular vesicles. Here, we proposed the experimental protocol to obtain spheroids from the two cell lines, wild-type (WT) and Annexin A1 (ANXA1) knock-out (KO) MIA PaCa-2, this last previously obtained through CRISPR/Cas9 genome editing system. The use of three-dimensional (3D) models, like spheroids, can be useful to mimic tumor characteristics and for preclinical chemo-sensitivity studies. By using PC spheroids, we have assessed the activity of intracellular and extracellular ANXA1. Indeed, we have proved that the intracellular protein influences in vitro tumor development and growth by spheroids analysis, in addition to defining the modification about cell protein pattern in ANXA1 KO model compared to the WT one. Moreover, we have tested the response to FOLFIRINOX chemotherapy regimen whose cytostatic effect appeared notably increased in ANXA1 KO spheroids. Additionally, this study has highlighted that the extracellular ANXA1 action is strengthened through the EVs supporting spheroids growth and resistance to drug treatment, mainly affecting tumor progression. Thus, our data interestingly suggest the relevance of ANXA1 as a potential therapeutic PC marker

    Role of intracellular and extracellular annexin A1 in migration and invasion of human pancreatic carcinoma cells

    Get PDF
    Background: Annexin A1 (ANXA1), a 37 kDa multifunctional protein, is over-expressed in tissues from patients of pancreatic carcinoma (PC) where the protein seems to be associated with malignant transformation and poor prognosis. Methods: The expression and localization of ANXA1 in MIA PaCa-2, PANC-1, BxPC-3 and CAPAN-2 cells were detected by Western Blotting and Immunofluorescence assay. Expression and activation of Formyl Peptide Receptors (FPRs) were shown through flow cytometry/PCR and FURA assay, respectively. To investigate the role of ANXA1 in PC cell migration and invasion, we performed in vitro wound-healing and matrigel invasion assays. Results: In all the analyzed PC cell lines, a huge expression and a variable localization of ANXA1 in sub-cellular compartments were observed. We confirmed the less aggressive phenotype of BxPC-3 and CAPAN-2 compared with PANC-1 and MIA PaCa-2 cells, through the evaluation of Epithelial-Mesenchymal Transition (EMT) markers. Then, we tested MIA PaCa-2 and PANC-1 cell migration and invasiveness rate which was inhibited by specific ANXA1 siRNAs. Both the cell lines expressed FPR-1 and -2. Ac2-26, an ANXA1 mimetic peptide, induced intracellular calcium release, consistent with FPR activation, and significantly increased cell migration/invasion rate. Interestingly, in MIA PaCa-2 cells we found a cleaved form of ANXA1 (33 kDa) that localizes at cellular membranes and is secreted outside the cells, as confirmed by MS analysis. The importance of the secreted form of ANXA1 in cellular motility was confirmed by the administration of ANXA1 blocking antibody that inhibited migration and invasion rate in MIA PaCa-2 but not in PANC-1 cells that lack the 33 kDa ANXA1 form and show a lower degree of invasiveness. Finally, the treatment of PANC-1 cells with MIA PaCa-2 supernatants significantly increased the migration rate of these cells. Conclusion: This study provides new insights on the role of ANXA1 protein in PC progression. Our findings suggest that ANXA1 protein could regulate metastasis by favouring cell migration/invasion intracellularly, as cytoskeleton remodelling factor, and extracellularly like FPR ligand

    Cl-IB-MECA Inhibits Human Thyroid Cancer Cell Proliferation Independently of A3 Adenosine Receptor Activation

    Get PDF
    A3 adenosine receptor (A3AR) agonists have been reported to modulate cellular proliferation. This work was aimed to investigate the expression and the possible implication of A3AR in the human thyroid carcinomas. Normal thyroid tissue samples did not express A3 adenosine receptor, while primary thyroid cancer tissues expressed high level of A3AR, as determined by immunohistochemistry analysis. In human papillary thyroid carcinoma cell line, NPA, at concentrations > or =10 microM, the A3AR-selective agonist 2-chloro-N(6)-(3-iodobenzyl)adenosine-5'-N-methylcarboxamide (Cl-IB-MECA) produced inhibition of cell growth, by blocking the G(1) cell cycle phase in a concentration- and time-dependent manner. This effect was well correlated with a reduction of protein expression of cyclins D1 and E2 after 24 hours of Cl-IB-MECA treatment. Moreover Cl-IB-MECA induced dephosphorylation of ERK1/2 in a time- and concentration-dependent manner, which in turn inhibits cell proliferation. The effect of Cl-IB-MECA was not prevented by A3AR antagonists, MRS1191 or MRS1523 or FA385. Furthermore, neither nucleoside transporter inhibitors, Dypiridamole and NBTI, nor the A1, A2A and A2B receptors antagonists were able to block the response to Cl-IB-MECA. Although Cl-IB-MECA has been shown to influence cell death and survival in other systems through an A3AR-mediated mechanism, in NPA cells the growth inhibition induced by micromolar concentrations of Cl-IB-MECA is not related to A3AR activation and hence that its effects on human papillary carcinoma cell line seem to be independent of the presence of this receptor subtype

    Effects of Hst3p inhibition in Candida albicans: a genome-wide H3K56 acetylation analysis

    Get PDF
    Candida spp. represent the third most frequent worldwide cause of infection in Intensive Care Units with a mortality rate of almost 40%. The classes of antifungals currently available include azoles, polyenes, echinocandins, pyrimidine derivatives, and allylamines. However, the therapeutical options for the treatment of candidiasis are drastically reduced by the increasing antifungal resistance. The growing need for a more targeted antifungal therapy is limited by the concern of finding molecules that specifically recognize the microbial cell without damaging the host. Epigenetic writers and erasers have emerged as promising targets in different contexts, including the treatment of fungal infections. In C. albicans, Hst3p, a sirtuin that deacetylates H3K56ac, represents an attractive antifungal target as it is essential for the fungus viability and virulence. Although the relevance of such epigenetic regulator is documented for the development of new antifungal therapies, the molecular mechanism behind Hst3p-mediated epigenetic regulation remains unrevealed. Here, we provide the first genome-wide profiling of H3K56ac in C. albicans resulting in H3K56ac enriched regions associated with Candida sp. pathogenicity. Upon Hst3p inhibition, 447 regions gain H3K56ac. Importantly, these genomic areas contain genes encoding for adhesin proteins, degradative enzymes, and white-opaque switching. Moreover, our RNA-seq analysis revealed 1330 upregulated and 1081 downregulated transcripts upon Hst3p inhibition, and among them, we identified 87 genes whose transcriptional increase well correlates with the enrichment of H3K56 acetylation on their promoters, including some well-known regulators of phenotypic switching and virulence. Based on our evidence, Hst3p is an appealing target for the development of new potential antifungal drugs

    BAG3 protein regulates stress- induced apoptosis in normal and neoplastic leukocytes

    Get PDF
    Co-chaperone proteins that share the Bcl-2-associated athanogene (BAG) domain are characterized by their interaction with a variety of partners, such as heat shock proteins (Hsp), steroid hormone receptors, Bcl-2, Raf-1 and others, involved in regulating protein folding and a number of cellular processes, including proliferation and apoptosis. Among BAG family members there is BAG3, also known as CAIR-1 or Bis. BAG3 forms a complex with Hsp70,1,2,4,6 a protein able to modulate apoptosis by interfering with cytochrome c release, apoptosome assembly and other events in the death process. In addition, BAG3 polypeptide binds to phospholipase C-g (PLC-g)4 or Bcl-2 protein.3,5 Due to such interaction with more than one apoptosis-modulating factor, BAG3 can participate in apoptosis regulation. Indeed, its hyperexpression can decrease apoptosis induced via Bax or Fas in the human epithelial cell line HeLa3 or by IL-3 deprivation in the murine hematopoietic cell line 32D.5 Furthermore, we recently showed that BAG3 downmodulation enhances the apoptotic response to chemotherapy in human primary B chronic lymphocytic leukemia cell
    corecore