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Abstract
This paper develops a quantile hidden semi-Markov regression to jointly estimate multiple quantiles for the analysis of
multivariate time series. The approach is based upon the Multivariate Asymmetric Laplace (MAL) distribution, which allows
to model the quantiles of all univariate conditional distributions of a multivariate response simultaneously, incorporating the
correlation structure among the outcomes. Unobserved serial heterogeneity across observations is modeled by introducing
regime-dependent parameters that evolve according to a latent finite-state semi-Markov chain. Exploiting the hierarchical
representation of the MAL, inference is carried out using an efficient Expectation-Maximization algorithm based on closed
form updates for all model parameters, without parametric assumptions about the states’ sojourn distributions. The validity
of the proposed methodology is analyzed both by a simulation study and through the empirical analysis of air pollutant
concentrations in a small Italian city.

Keywords EM algorithm · Latent process · Maximum likelihood · Multivariate asymmetric Laplace distribution · Quantile
regression · Sojourn distribution

1 Introduction

Since their introduction in the 1960s, Hidden Markov Mod-
els (HMMs, see MacDonald and Zucchini 1997; Cappé et al.
2006; Zucchini et al. 2016) have been successfully imple-
mented in awide range of applications for the analysis of time
series data. This class ofmodels is described by an observable
stochastic process whose dynamic is governed, completely
or partially, by a latent unobservable Markov chain. Owing
to their mathematical tractability and the availability of effi-
cient computational procedures, the use of HMMs is well
justified when the researcher is interested in inference and/or
predictions about the latent process based on the observed
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one. For a detailed survey of the literature and fields of appli-
cation, please see MacDonald and Zucchini 1997; Ephraim
and Merhav 2002; Cappé et al. 2006; Maruotti 2011; Bar-
tolucci et al. 2012; Zucchini et al. 2016 and Maruotti and
Punzo (2021).

One immediate consequence of the Markov property is
that in anyHMM, the sojourn time (also defined as state dura-
tion or dwell-time), that is, the number of consecutive time
points that theMarkov chain spends in a given state, is implic-
itly geometrically distributed (Langrock and Zucchini 2011;
Zucchini et al. 2016). Despite the popularity of HMMs, this
assumption may not be realistic in many applications which
can lead to biased parameter estimates and deteriorate the
states classification performance due to a misspecification of
the dynamic of the hidden process. Bulla and Bulla (2006)
and Maruotti et al. (2019), for instance, show the inability of
HMMs to model temporal dependence and reproduce empir-
ical characteristics in real-world data, especially when the
probability mass function of sojourn times is far from being
geometric.

Motivated by these considerations, Hidden Semi-Markov
Models (HSMMs, see Yu 2015) are designed to relax this
condition by allowing the Sojourn Distributions (SDs) to be
modeled directly by the researcher using more flexible para-
metric or nonparametric distributions.
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Typical choices include families of discrete (semi-)para-
metric distributions or, alternatively, one can avoid distribu-
tional assumptions by estimating the SD probability mass
functions based on the observations (Sansom and Thom-
son 2001; Guédon 2003; Pohle et al. 2022). Combining the
increased flexibility to capture a wide range of distributional
shapes of the SDswith thewell-known advantages ofHMMs,
HSMMs constitute a versatile framework in several spheres
of application (see Guédon 2003; Barbu and Limnios 2009;
Bulla et al. 2010; O’Connell and Højsgaard 2011; Yu 2015;
Maruotti and Punzo 2021 and the references therein).

In the regression context where covariates are available,
both HMMs and HSMMs have also been extended to include
a set of predictors by introducing state-dependent regression
parameters that evolve over time according to the unobserved
process (Hamilton 1989; Yu 2015; Zucchini et al. 2016).

Thismodel specification permits to investigate the dynam-
ics of the hidden state sequence and, at the same time, allows
to examine state-specific covariate effects in the observable
process, providing a useful modeling framework to cap-
ture unobserved time-dependent heterogeneity. Typically, a
linear model targeting the conditional mean of the depen-
dent variable given covariates is specified. The assumptions
underlying traditional linear regression models, however, are
seldom satisfied in real data which often exhibit skewness,
heavy tails and outliers. Moreover, the effect of the covari-
ates can differ greatly between different parts of the response
distribution. Therefore, when the aim of the research focuses
not only at the center of the response distribution but also,
and especially in the tails, quantile regression (Koenker and
Bassett 1978) represents an interesting alternative to stan-
dard mean regression. This method provides a way to model
the conditional quantiles of a response variable with respect
to the covariates in order to have a more complete picture
of the entire conditional distribution compared to ordinary
least squares. In the univariate quantile regression frame-
work, both the classical and Bayesian inferential approaches
have been proposed in the literature to estimate the model
parameters. In the frequentist setting, the inferential approach
relies on the minimization of the asymmetric loss function
(see Koenker and Bassett 1978) while, in the Bayesian set-
ting and in a likelihood inferential approach, the Asymmetric
Laplace (AL) distribution has been introduced as a likelihood
inferential tool. The two approaches are well-justified by the
relationship between the quantile loss function and the AL
density. Indeed, Yu andMoyeed (2001) showed that the min-
imization of the quantile loss function is equivalent, in terms
of parameter estimates, to the maximization of the likeli-
hood associated with the AL density. For a detailed review
and list of references, Koenker (2005); Luo et al. (2012);
Bernardi et al. (2015) and Koenker et al. (2017) provide an
overview of the most used quantile regression techniques in
both the classical and Bayesian settings. In addition, quan-

tile regressionmethods have also been generalized to account
for serial heterogeneity. In the analysis of longitudinal data,
Farcomeni (2012) and Marino et al. (2018) consider uni-
variate linear quantile models where unobserved sources of
time-varying heterogeneity are captured by means of state-
dependent coefficients evolving according to a finite-state
homogeneous hiddenMarkov chain. Further, Ye et al. (2016)
and Maruotti et al. (2021) propose a (semi-)Markov quantile
regression tomodel the regime-switching effect of the regres-
sion coefficients in financial and environmental time series.

When multivariate response variables are concerned, the
existing literature on quantile regression is less extensive
since there is no “natural” ordering in a p-dimensional
space, for p > 1. As a consequence, the univariate quan-
tile regression method does not straightforwardly extend to
higher dimensions. Nevertheless, in most situations of prac-
tical interest, the purpose of the matter being investigated
lies in describing the distribution of a multivariate response
variable.

For this reason the search for a satisfactory notion of mul-
tivariate quantile has led to a flourishing literature on this
topic despite its definition is still a debatable issue (see Ser-
fling 2002;Kong andMizera 2012;Koenker et al. 2017; Stolfi
et al. 2018; Chavas 2018; Charlier et al. 2020; Merlo et al.
2021, 2022 and the references therein for relevant studies).

Recently, Petrella and Raponi (2019) generalized the AL
distribution inferential approach of the univariate quantile
regression to a multivariate framework by using the Multi-
variate Asymmetric Laplace (MAL) distribution defined in
Kotz et al. (2012). Employing theMAL distribution as a like-
lihood based inferential tool, the authors sidestep the problem
of defining the quantiles of a multivariate distribution, and
instead implement joint estimation for the univariate quan-
tiles of the conditional distribution of a multivariate response
variable given covariates, accounting for possible correlation
among the responses.

The purpose of this article is to extend the work of
Petrella and Raponi (2019) by introducing a HSMM for
the analysis of multivariate time series. More formally, we
develop a Quantile Hidden Semi-Markov Model (QHSMM)
to jointly estimate the quantiles of the univariate conditional
distributions of a multivariate response, accounting for the
dependence structure between the outcomes. In particular, to
capture the temporal evolution of unobserved heterogeneity,
we introduce state-dependent coefficients in the regression
model that evolve over time according to a latent semi-
Markov process. In order to prevent inconsistent parameter
estimates due to misspecification of the SDs, we adopt the
nonparametric approach of Guédon (2003) where they are
left unspecified and approximated by discrete distributions
concentrated on a finite set of time points estimated from
the data. Within this scheme, our modeling framework can
be thought of as a model-based clustering approach for data
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showing time-varying heterogeneity, where the interest lies
in the effect of cluster-specific covariates on various quantile
levels.

Throughout the paper we propose to estimate the model
parameters with a Maximum Likelihood (ML) approach
by using the MAL distribution as working likelihood in a
regression framework. Specifically, as in Petrella and Raponi
(2019) and Merlo et al. (2022), we consider the mixture rep-
resentation of the MAL distribution which allows us to build
an efficient Expectation-Maximization (EM) algorithm with
theE- andM-step updates in closed form for allmodel param-
eters.

Using simulation experiments, we illustrate the validity
of our approach under different data generating processes
and evaluate its ability in recovering the true values of the
regression coefficients, the true classification and number of
latent states.

In the empirical analysis, we apply the proposed method-
ology to investigate the effect of a collection of atmospheric
variables on the daily concentrations of three major pol-
lutants, i.e., particulate matter, ozone and nitrogen dioxide
measured in Rieti (Italy) from 2019 to 2021. Our method
allows us to: (i) assess how the effects of atmospheric vari-
ables can vary across different (more extreme) quantiles of
the conditional distribution of air pollutants, accounting for
their dependence structure; (ii) summarize the data by means
of a reduced number of latent regimes associated with dif-
ferent concentration levels of chemicals.

The paper is organized as follows. In Sect. 2, we intro-
duce the proposed model. Sect. 3 illustrates the EM-based
ML approach to estimating the model parameters and the
computational details of the algorithm. In Sect. 4 we present
the simulation results, while Sect. 5 discusses the empirical
application. Finally, Sect. 6 concludes.

2 Methodology

Let {St }Tt=1 denote a finite-state hidden semi-Markov chain
defined over a discrete state space S = {1, . . . , K }. The
latent process {St }Tt=1 is constructed as follows. A homo-
geneous hidden Markov chain with K states models the
transitions between different states, with initial probabilities,
πk = Pr(S1 = k), and transition probabilities

π jk = Pr(St+1 = k | St = j, St+1 �= j), (1)

with
∑K

k=1 π jk = 1, π jk ≥ 0, for every k = 1, . . . , K and
π j j = 0, i.e., the diagonal elements of the transition proba-
bility matrix are zeros. More concisely, we collect the initial
and transition probabilities in the K -dimensional vector π

and in the K × K matrixQ, respectively. Because the unob-
served process is semi-Markovian, only transitions from one

state to another are governed by the transition probabilities
in (1), but the duration of a stay in a state is modeled by a sep-
arate SD. Specifically, let us denote by dk(u) the SD, i.e., the
probability the hidden process {St }Tt=1 spends u consecutive
time steps in the k-th state, as follows:

dk(u) = Pr(St+u �= k, St+u−1 = k, . . . ,

St+1 = k | St = k, St−1 �= k), u = 1, . . . ,Uk, (2)

where Uk corresponds to the maximum sojourn time of the
hidden chain in state k. Let us also denoteU = (U1, . . . ,UK )

the K -dimensional vector collecting all state-specific maxi-
mum sojourn times.

HSMMs allow for great flexibility as the SD in (2) is
directly specified by the researcher and estimated from the
observed data. The SD can be chosen from a large variety
of parametric distributions, such as the shifted-Poisson, the
shifted-negative binomial distributions or, in the particular
case where dk(u) is assumed to be geometrically distributed,
a HSMM reduces to a HMM with the most likely sojourn
time for every state being 1 (Zucchini et al. 2016). Parametric
distributions, however, might lack the flexibility to capture
key features of empirical SDs in the data, increasing state
misclassification rates and inducing substantial bias.Alterna-
tively, semi- and nonparametric data-driven approaches can
be adopted (see Sansom and Thomson 2001; Guédon 2003;
Langrock and Zucchini 2011; Maruotti et al. 2021) to pro-
vide sufficient additional flexibility in comparison to HMMs
and accommodate complex distributional shapes.

To build the proposed model, let Yt = (Y (1)
t , . . . ,Y (p)

t )′
be a continuous observable p-variate response variable and
Xt = (1, X (2)

t , . . . , X (m)
t )′ be a m-dimensional vector of

covariates, with the first element being the intercept, at time
t = 1, . . . , T . The process {Yt }Tt=1 represents the state-
dependent process of the HSMM and, conditional on the
hidden states, fulfills the independence property:

fY(yt | xt , y1, . . . , yt−1, S1 = s1, . . . ,

St = st ) = fY(yt | xt , St = st ), (3)

where fY(yt | xt , St = st ) is the conditional distribution of
Yt given the covariates Xt and the hidden state occupied at
time t .

As mentioned in Section 1, our objective is to provide
joint estimation of the p quantiles of the univariate condi-
tional distributions ofYt , taking into account time-dependent
heterogeneity and potential correlation among the compo-
nents of Yt . Given p quantile indexes τ = (τ1, . . . , τp),
with τ j ∈ (0, 1), j = 1, . . . , p, the Quantile Hidden Semi-
Markov Model (QHSMM) is defined as follows:

Yt = βk(τ )Xt + εtk(τ ),
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t = 1, . . . , T and k = 1, . . . , K , (4)

with βk(τ ) = (β
(1)
k (τ ), . . . ,β

(p)
k (τ )) being a state-specific

p×m matrix of unknown regression coefficients that evolves
over time according to the hidden process St and takes one of
the values in the set {β1(τ ), . . . ,βK (τ )}, and where εtk(τ )

denotes a p-dimensional vector of error termswith univariate
component-wise quantiles (at fixed levels τ1, . . . , τp, respec-
tively) equal to zero.

Generalizing the approach of Petrella and Raponi (2019),
as conditional distribution of Yt we consider a Multivari-
ate Asymmetric Laplace (MAL) distribution (see Kotz et al.
2012). In detail, based on (4) we assume Yt | Xt = xt , St =
k ∼ MALp(μtk,Dk ξ̃ ,Dk�kDk) whose probability density
function is givenby:

fY(yt | xt , St = k) =
2 exp

{
(yt − μtk)

′D−1
k �−1

k ξ̃
}

(2π)p/2|Dk�kDk |1/2
(

m̃tk

2 + d̃k

)ν/2

Kν

(√

(2 + d̃k)m̃tk

)

, (5)

where, for each time occasion t = 1, . . . , T and state
k = 1, . . . , K , the location parameter μtk is defined by the
linear model:

μtk = μ(St = k, τ ) = βk(τ )Xt , (6)

withDk ξ̃ being the skewness parameter,Dk = diag[δk1, . . . ,
δkp], δk j > 0, and ξ̃ = (ξ̃1, . . . , ξ̃p)

′ having generic element

ξ̃ j = 1−2τ j
τ j (1−τ j )

, j = 1, . . . , p. �k is a p × p positive defi-
nite matrix such that �k = ��k�, with �k being a p × p
state-specific correlation matrix and � = diag[σ1, . . . , σp],
with σ 2

j = 2
τ j (1−τ j )

, j = 1, . . . , p. Moreover, m̃tk =
(yt − μtk)

′(Dk�kDk)
−1(yt − μtk), d̃k =Q̧′�−1

k ξ̃ , and Kν(·)
denotes the modified Bessel function of the third kind with
index parameter ν = (2 − p)/2.

One of the key benefits of the MAL distribution is that,
using (4) and (5), and following Kotz et al. (2012), the
MALp(μ,Dξ̃ ,D�D) can be written as a location-scale
mixture with the following representation:

Y = μ + Dξ̃ C̃ +
√
C̃D61/2Z (7)

where Z ∼ Np(0p, Ip) denotes a p-variate standard Normal
distribution and C̃ ∼ Exp(1) has a standard exponential dis-
tribution, with Z being independent of C̃ . In particular, the
constraints imposed on ξ̃ and � guarantee that the j-th ele-
ment of μtk , μtk j , is the τ j -th conditional quantile function

of Y ( j)
t given St = k, for k = 1, . . . , K and j = 1, . . . , p,

and represent necessary conditions for model identifiability
for any fixed quantile level τ1, . . . , τp, as stated in the next
proposition.

Proposition 1 Let Yt | Xt = xt , St = k ∼ MALp(μtk,

Dk ξ̃ ,Dk�kDk), for k = 1, . . . , K, where K is a positive
integer, ξ̃ = (ξ̃1, . . . , ξ̃p)

′ with ξ̃ j = 1−2τ j
τ j (1−τ j )

being known

for any fixed value of τ j . Furthermore, �k = ��k� is a
p × p positive definite matrix with �k being an unknown
p × p correlation matrix and � = diag[σ1, . . . , σp], with
fixed element σ 2

j = 2
τ j (1−τ j )

, j = 1, . . . , p. Then, the model
in (2)-(6) is identified.

Proof See Proof of Proposition 1 in Appendix. ��
In comparison with other methods in the literature, the
proposed modeling framework includes the homogeneous

joint quantile regression approach of Petrella and Raponi
(2019) when K = 1 and it reduces to the univariate hid-
den semi-Markov-switching quantile regression of Maruotti
et al. (2021) when p = 1. Naturally, when a geometric SD
is assumed for all latent states, we call our methodology the
Quantile Hidden Markov Model (QHMM).

3 Maximum likelihood estimation and
inference

In this section we introduce a ML approach to making infer-
ence onmodel parameters. As is usually done in the literature
in the presence of latent variables, we propose a suitable
likelihood-based EM algorithm (Dempster et al. 1977). To
hedge against possibly biased inference from incorrect para-
metric assumptions on the SDs, we estimate the sojourn
probabilities nonparametrically following Guédon (2003).
In addition, we show that both the E- and M-step updates
of the algorithm can be obtained in closed form by exploit-
ing the hierarchical representation of the MAL distribution
in (7) under the constraints onQ̧and �, hence reducing the
computational burden compared to direct maximization of
the likelihood. We illustrate the EM algorithm to fit the more
general QHSMMbut it can also be employed for the QHMM
by assuming a geometric SD. To ease the notation, unless
specified otherwise, we omit the quantile levels vector τ , yet
all model parameters are allowed to depend on it. All the
proofs are collected in the Appendix.

Let us denote by 	τ = (β1, . . . ,βK ,D1, . . . ,DK ,�1,

. . . ,�K ,π ,Q, d1(u), . . . , dK (UK )) the set ofmodel param-
eters. For any fixed τ , number of hidden states K and
maximum sojourn times U, we use the MAL representation

123



Statistics and Computing (2022) 32 :61 Page 5 of 22 61

in (7) to express the complete-data likelihood as follows:

Lc(	τ ) = πs	1
ds	1 (u1)

{ R−1∏

r=2

πs	r |s	r−1
ds	r (ur )

}

πs	R |s	R−1

Ds	R
(uR)

T∏

t=1

fY(yt | xt , st , c̃t , τ ) fC̃ (c̃t ), (8)

where C̃ is a latent variable that follows an exponential distri-
bution with parameter 1, s	

r is the r -th visited state, ur is the
time spent in that state (i.e., the duration of the r -th visit) and
R−1 is the number of state changes up to time T . Following
Guédon (2003), the survivor function Dk(u) for the sojourn
time in state k is defined as:

Dk(u) =
∑

v≥u

dk(v). (9)

The survivor function sums up the individual probability
masses of all possible sojourns of length v ≥ u and it has

several advantages. Firstly, we do not have to assume that the
process is leaving a state immediately after the upper end-
point T . Secondly, it provides a more accurate prediction of
the last state visited, which is important when the data anal-
ysis wishes to estimate the most recently visited state, and
improves parameter estimation (O’Connell and Højsgaard
2011).

3.1 The EM algorithm

The EM algorithm alternates between performing an expec-
tation (E) step, which defines the expectation of the complete
log-likelihood function evaluated using the current estimates
of the parameters, and a maximization (M) step, which
computes parameter estimates by maximizing the expected
complete log-likelihood obtained in the E-step. The expected
complete log-likelihood function and the optimal parameter
updates are given in the following propositions.

Given the representation in (8), for the implementation
of the algorithm we introduce the following quantities. We
define the probability of being in state k at time t given the
observed sequence as:

γtk = Pr(St = k | Y1, . . . ,YT ). (10)

The probability the process left state j at time t − 1 and
entered state k at time t given the observed sequence is:

vt jk = Pr(St−1 = j, St = k | Y1, . . . ,YT ). (11)

Finally, let us denote by ηk(u) the expected number of times
the process spends u consecutive time steps in state k as:

ηk(u) = Pr(S1+u �= k, S1+u−v = k,

v = 1, . . . , u | Y1, . . . ,YT )

+
T∑

t=2

Pr(St+u �= k, S1+u−v = k, v = 1, . . . , u,

St−1 �= k | Y1, . . . ,YT ). (12)

Then, the expected log-likelihood for the complete data is
presented in the following proposition.

Proposition 2 For any fixed τ = (τ1, . . . , τp), number
of hidden states K and maximum sojourn times U =
(U1, . . . ,UK ), the expected complete log-likelihood function
(up to additive constants) is:

O(	τ ) =
K∑

k=1

γ1k logπk +
T∑

t=1

K∑

j=1

K∑

k �= j

vt jk logπ jk +
K∑

k=1

Uk∑

u=1

ηk(u) log dk(u) − 1

2
T

K∑

k=1

log | Dk�kDk |

+
T∑

t=1

K∑

k=1

γtk z̃tk(Yt − μtk)
′D−1

k �−1
k ξ̃ − 1

2

T∑

t=1

K∑

k=1

γtk z̃tk(Yt − μtk)
′(Dk�kDk)

−1(Yt − μtk) − 1

2

T∑

t=1

K∑

k=1

γtk c̃tk ξ̃
′
�−1

k ξ̃ , (13)

where

c̃tk =
(

m̃tk

2 + d̃k

) 1
2
Kν+1

(√

(2 + d̃k)m̃tk

)

Kν

(√

(2 + d̃k)m̃tk

) ,

z̃tk =
(
2 + d̃k
m̃tk

) 1
2 Kν+1

(√

(2 + d̃k)m̃tk

)

Kν

(√

(2 + d̃k)m̃tk

) − 2ν

m̃tk
, (14)

with

m̃tk = (yt − μtk)
′(Dk�kDk)

−1(yt − μtk), d̃k = ξ̃
′
�−1

k ξ̃ .

(15)

Therefore, the EM algorithm can be implemented as follows:
E-step: At the generic r -th iteration of the algorithm, let

	̂
(r−1)
τ denote the current parameter estimates. Then, con-

ditionally on the observed data and 	̂
(r−1)
τ , the quantities,

γtk in (10) and vt jk in (11), can be calculated via a dynamic
programming method known as the forward-backward algo-
rithm (see, e.g., Levinson et al. 1983), while ηk(u) in (12)
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canbe computedusing the efficient adaptationof the forward-
backward algorithm provided by Guédon (2003). Similarly,
the conditional expectations c̃tk and z̃tk in (14) are con-
sidered; see the Appendix. We denote such quantities as
γ̂

(r)
tk , v̂

(r)
t jk, η̂

(r)
k (u), ˆ̃c(r)

tk and ˆ̃z(r)tk .
M-step: Substitute them in (13) to maximize O(	τ |

	̂
(r−1)
τ ) with respect to 	τ , and obtain the updated param-

eter estimates. Because the expected complete-data log-
likelihood in (13) decomposes into orthogonal subproblems,
the maximization with respect to the regression coefficients,
the parameters of the MAL distribution and the hidden
process, can be performed separately. Thus, the initial prob-
abilities π j and transition probabilities π jk are estimated by:

π̂
(r)
j = γ̂

(r)
1 j and π̂

(r)
jk =

∑T
t=1 v̂

(r)
t jk

∑T
t=1

∑K
j �=k v̂

(r)
t jk

. (16)

To update the state-specific SD, we follow the nonparametric
approach of Guédon (2003). In particular, we set the latent
state duration densities to be discrete nonparametric distri-
butions with arbitrary point mass assigned to the feasible
duration values, that is, the SD is estimated as follows:

d̂(r)
k (u) = η̂

(r)
k (u)

∑Uk
v=1 η̂

(r)
k (v)

. (17)

Finally, the M-step updates of the parameters in the regres-
sion equation {β j ,D j ,� j }Kj=1, are given in the following
proposition.

Proposition 3 At the generic r-th iteration, the values of
β j ,D j and � j maximizing (13) are:

β̂
′(r)
j = (

T∑

t=1

γ̂
(r)
t j

ˆ̃z(r)t j XtX′
t )

−1

(
T∑

t=1

γ̂
(r)
t j

ˆ̃z(r)t j XtY′
t −

T∑

t=1

γ̂
(r)
t j Xi t ξ̃

′
D̂(r−1)

j

)

. (18)

�̂
(r)
j = 1

T

T∑

t=1

γ̂
(r)
t j

ˆ̃z(r)t j D̂
−1
j

(r−1)(Yt − μ̂
(r)
t j )(Yt − μ̂

(r)
t j )′D̂−1

j
(r−1) + 1

T

T∑

t=1

γ̂
(r)
t j

ˆ̃c(r)
t j ξ̃ ξ̃

′ − 2

T
D̂−1

j
(r−1)

T∑

t=1

γ̂
(r)
t j (Yt − μ̂

(r)
t j )ξ̃

′
,

(19)

where μ̂
(r)
t j = β̂

(r)
j Xt .

For the j-th state, the elements δ jk, k = 1, . . . , p, of the
diagonal scale matrix D j are estimated by:

δ̂
(r)
jk = 1

T

T∑

t=1

γ̂
(r)
t j ρτ (Y

(k)
t − μ̂

(r)
t jk), (20)

where ρτ (·) is the quantile check function of Koenker and
Bassett (1978):

ρτ (u) = u(τ − 1(u < 0)), (21)

with 1(·) being the indicator function and μ̂
(r)
t jk being the k-th

element of the vector μ̂
(r)
t j .

The E- and M-steps are alternated until convergence, that
is when the observed likelihood between two consecutive
iterations is smaller than a predetermined threshold. In this
paper, we set this threshold criterion equal to 10−5.

Following Maruotti et al. (2021), for fixed τ , K and U,
we initialize the EM algorithm by providing the initial states
partition, {S(0)

t }Tt=1, according to a Multinomial distribution
with probabilities 1/K . From the generated partition, the off-
diagonal elements of Q̂(0) are computed as proportions of

transition.We obtain β̂
(0)
k and D̂(0)

k by fitting univariate quan-

tile regressions on observations within state k, while �̂
(0)
k is

set equal to the empirical correlation computed on observa-
tions in the k-th state. The initial SDs are estimated from
{S(0)

t }Tt=1 assuming a geometric distribution as in HMMs. To
avoid convergence to local maxima and better explore the
parameter space, we fit the proposed QHSMM using a mul-
tiple random starts strategy with different starting partitions
and retain the solution corresponding to the maximum like-
lihood value.

Once we computed theML estimates of the model param-
eters 	̂τ , we calculate standard errors using a parametric
bootstrap approach (Visser et al. 2000). That is, we refitted
the model to H bootstrap samples and approximate the stan-
dard error of each model parameter with its corresponding
standard deviation computed on bootstrap samples. Hence,
standard error estimates for 	̂τ are given by the diagonal
elements of:

̂Cov(	̂τ ) =
√
√
√
√ 1

H − 1

H∑

h=1

(	̂
(h)

τ − 	̄τ )(	̂
(h)

τ − 	̄τ )′, (22)

where 	̂
(h)

τ is the set of parameter estimates for the h-th
bootstrap sample and 	̄τ denote the sample mean of all

	̂
(h)

τ , h = 1, . . . , H .
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3.2 Model selection

In the EM algorithm discussed above, the number of hid-
den states K and maximum length of state durations U =
(U1, . . . ,UK ) are unknown. From an applied perspective,
choosing an adequate number of states is a crucial aspect
of the data analysis which shall take into account the data
structure and research question at hand. In particular, K
is typically selected using penalized-likelihood criteria or
cross-validation methods, which can become demanding to
fit computationally (Pohle et al. 2017). In HSMMs, not only
the number of hidden states shall be selected, but also the
maximum length of state durations. In practice, this amounts
to fixing Uk = U , k = 1, . . . , K , with U being large
enough to capture the main support of the SD in each state
(see Maruotti et al. 2021). The major disadvantages of this
approach are the large number of parameters to be estimated
and the fact that different states may require substantially
different maximum sojourn times. For these reasons, herein
we simultaneously select the optimal values of K and vector
U using penalized likelihood criteria, such as AIC (Akaike
1998), BIC (Schwarz 1978) and ICL (Biernacki et al. 2000)
which penalizes the BIC for the estimated mean entropy and
it is given by:

ICL(K ,U) = BIC(K ,U) − 2
T∑

t=1

K∑

k=1

γ̂tk log γ̂tk, (23)

where BIC(K ,U) in (23) is defined as BIC(K ,U) = −2
(	̂τ )

+ log(T )ν f , with 
(	̂τ ) = log
∑

s1,...,sT

∑
u Lc(	̂τ ) being

the observed data log-likelihood in correspondence of the
ML estimate of 	τ , T corresponds to the number of obser-
vations and ν f denotes the number of free model parameters
in 	τ . Computing 
(	̂τ ) may prove to be difficult to eval-
uate directly because it involves the sum on every possible
state sequence of length T ,

∑
s1,...,sT , and the sum on every

supplementary duration from time T + 1 spent in the state
occupied at time T ,

∑
u . Therefore, to compute 
(	̂τ ) we

use the variables in (10)-(12) required for the EM algorithm
(please see Guédon 2003).

All criteria involve penalization terms depending on the
number of parameters ν f , which is given by the sum of:

• the number of regression parameters in {β1, . . . ,βK }:
p × m × K ,

• the number of scale parameters in Dk : p × K ,
• the number of correlation parameters in �k : p× K (K −

1)/2,
• the number of independent transition probabilities in Q:

K × (K − 2),
• the unconstrained sojourn distribution probabilities:

∑K
k=1(Uk − 1).

To select the order of the hidden process, we first define a
sequence of values of K and construct a K -dimensional grid
of maximum sojourn distributions, U ⊂ R

K≥0, and then fit
the model using the EM algorithm described above for fixed
τ , K and a vector U in U . Because a full search over U
might be computationally infeasible, we employ the greedy
search algorithm considered in Langrock et al. (2015) and
Adam et al. (2019) and select the best combination of (K ,U)

corresponding to the lowest value of the penalized likelihood
criteria.

4 Simulation study

We conduct a simulation study to evaluate the finite sam-
ple properties of the proposed QHSMM. This simulation
exercise addresses the following issues: (i) study the per-
formance of the model under different distributional choices
for the error term and SDs, when either a linear or nonlinear
quantile regression function of Y given X is considered; (ii)
assess the classification performance of the proposed model;
(iii) evaluate the performance of penalized likelihood crite-
ria in selecting the optimal number of hidden states K and
maximum sojourn timesU. Additional simulation studies are
illustrated in the Supplementary Materials.

We consider T = 1000, a continuous response variable
of dimension p = 2 and one explanatory variable Xt ∼
N (0, 1). The observations are generated from a two state
HSMM, i.e., K = 2, using the following data generating
process:

Yt = βkXt + εtk, (24)

where Xt = (1, Xt )
′ and the true values of the state-

dependent parameters, β1 and β2, are given by:

β1 =
(

4 2
−3 −1

)

and β2 =
(

5 −2
−4 1

)

. (25)

We consider the following two distributions for the error
terms εtk in (24):

(N ) : εtk are generated from a bivariate Normal random
variable with zero mean vector and variance-covariance
matrix equal to �̃k , for k = 1, 2;

(T ) : εtk are generated from a bivariate Student t distribution
with 5 degrees of freedom, zero mean and scale matrix
equal to �̃k , for k = 1, 2.

The state-specific covariance matrices �̃k, k = 1, 2, are set
equal to low (�̃1 = (

1 0.3
0.3 1

)
) and high (�̃2 = (

1 0.8
0.8 1

)
)

correlation between the responses.
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Table 1 ARB (in percentage) and RMSE (in brackets) for state-parameter estimates of β1 and β2 with normal errors for the QHSMM

True Coef. τ

(0.10, 0.10) (0.25, 0.25) (0.50, 0.50) (0.75, 0.75) (0.90, 0.90)

Panel A: SPO

−4 2.584 (0.081) 0.653 (0.062) 0.095 (0.058) −0.452 (0.066) −2.227 (0.090)

−3 3.576 (0.051) 0.447 (0.039) −0.053 (0.035) −0.549 (0.038) −3.771 (0.053)

−2 0.243 (0.081) 0.149 (0.068) 0.150 (0.065) 0.040 (0.070) 0.214 (0.086)

−1 0.055 (0.064) 0.146 (0.052) 0.201 (0.050) 0.161 (0.051) 0.293 (0.065)

1 −0.588 (0.085) −0.344 (0.068) −0.271 (0.067) −0.074 (0.071) −0.344 (0.088)

2 0.047 (0.063) −0.085 (0.051) −0.152 (0.050) −0.205 (0.051) −0.265 (0.063)

4 −2.658 (0.052) −0.342 (0.038) 0.023 (0.035) 0.374 (0.039) 2.674 (0.054)

5 −1.994 (0.081) −0.487 (0.061) −0.077 (0.058) 0.415 (0.062) 1.797 (0.085)

Panel B: SNB

−4 2.851 (0.092) 0.738 (0.072) 0.100 (0.067) −0.579 (0.077) −2.414 (0.110)

−3 3.390 (0.050) 0.424 (0.036) −0.021 (0.032) −0.493 (0.035) −3.689 (0.050)

−2 0.298 (0.097) 0.457 (0.079) 0.044 (0.073) −0.179 (0.080) −0.061 (0.098)

−1 −0.335 (0.061) 0.111 (0.048) 0.087 (0.047) −0.190 (0.050) −0.062 (0.061)

1 −0.457 (0.098) −0.867 (0.078) 0.007 (0.071) 0.352 (0.078) 0.257 (0.096)

2 0.255 (0.061) −0.043 (0.050) −0.131 (0.047) −0.010 (0.049) 0.073 (0.063)

4 −2.496 (0.050) −0.274 (0.036) 0.047 (0.033) 0.323 (0.036) 2.545 (0.052)

5 −2.252 (0.095) −0.578 (0.074) −0.076 (0.070) 0.488 (0.074) 1.881 (0.103)

Panel C: GEO

−4 2.771 (0.076) 0.774 (0.060) 0.027 (0.056) −0.589 (0.065) −2.306 (0.090)

−3 3.174 (0.062) 0.235 (0.044) −0.037 (0.040) −0.556 (0.044) −3.769 (0.064)

−2 0.030 (0.083) −0.033 (0.068) −0.082 (0.063) −0.068 (0.068) 0.090 (0.082)

−1 −1.221 (0.069) −0.284 (0.053) −0.134 (0.049) −0.055 (0.053) 0.189 (0.067)

1 −0.292 (0.082) −0.231 (0.067) −0.154 (0.063) −0.189 (0.069) −0.249 (0.081)

2 0.841 (0.070) 0.264 (0.055) −0.019 (0.051) −0.015 (0.052) −0.005 (0.066)

4 −2.420 (0.059) −0.219 (0.044) 0.038 (0.039) 0.300 (0.044) 2.417 (0.061)

5 −2.137 (0.076) −0.619 (0.060) −0.041 (0.058) 0.474 (0.062) 1.779 (0.087)

Similarly to Maruotti et al. (2021), for each scenario we
further consider three SDs:

(SPO) : a shifted-Poisson, i.e.:

dk(u) = exp(−λk)
λu−1
k

(u − 1)! , u = 1, 2, . . . , (26)

with λ1 = 10 and λ2 = 5;

(SNB) : a shifted-negative binomial, i.e.:

dk(u) = �(u + λk − 1)

(u − 1)!�(λk)
pλk
k (1 − pk)

u−1, u = 1, 2, . . . ,

(27)

with λ1 = 8, λ2 = 4, p1 = 0.5 and p2 = 0.6;
(GEO) : a geometric sojourn, i.e.:

dk(u) = pk(1 − pk)
u−1, u = 1, 2, . . . , (28)

with p1 = 0.2 and p2 = 0.3.

We fit the proposed QHSMM for five quantile levels, i.e.,
τ = (0.10, 0.10), τ = (0.25, 0.25), τ = (0.50, 0.50),
τ = (0.75, 0.75) and τ = (0.90, 0.90). For each model,
we carry out B = 1000 Monte Carlo replications and report
the following indicators. The Average Relative Bias (ARB),
expressed as a percentage:

ARB(θ̂τ ) = 1

B

B∑

b=1

(θ̂
(b)
τ − θτ )

θτ
× 100, (29)

where θ̂
(b)
τ is the estimated parameter at level τ for the

b-th replication and θτ is the corresponding “true” value.
Secondly, the Root Mean Square Error (RMSE) of model
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Table 2 ARB (in percentage) and RMSE (in brackets) for state-parameter estimates of β1 and β2 with Student t errors for the QHSMM

τ

True Coef. (0.10, 0.10) (0.25, 0.25) (0.50, 0.50) (0.75, 0.75) (0.90, 0.90)

Panel A: SPO

−4 4.150 (0.132) 0.393 (0.068) 0.082 (0.059) −0.112 (0.069) −3.457 (0.140)

−3 3.213 (0.080) −0.420 (0.044) −0.099 (0.037) 0.200 (0.044) −4.030 (0.081)

−2 0.178 (0.119) −0.098 (0.077) −0.071 (0.069) 0.098 (0.078) 0.323 (0.124)

−1 −0.470 (0.088) 0.065 (0.058) −0.164 (0.050) −0.221 (0.057) −0.082 (0.089)

1 −0.610 (0.119) −0.135 (0.077) −0.273 (0.070) −0.469 (0.079) −0.740 (0.126)

2 0.613 (0.086) 0.258 (0.056) 0.257 (0.048) 0.250 (0.056) 0.231 (0.087)

4 −2.558 (0.075) 0.294 (0.042) 0.083 (0.036) −0.190 (0.042) 2.500 (0.075)

5 −2.986 (0.132) −0.236 (0.071) −0.075 (0.060) 0.115 (0.069) 2.574 (0.137)

Panel B: SNB

−4 5.410 (0.158) 0.579 (0.085) −0.054 (0.072) −0.577 (0.084) −5.037 (0.199)

−3 2.516 (0.080) −0.423 (0.042) 0.075 (0.034) 0.357 (0.041) −3.445 (0.082)

−2 0.906 (0.135) 0.177 (0.086) −0.101 (0.076) −0.038 (0.087) −0.171 (0.143)

−1 −0.945 (0.084) −0.119 (0.056) −0.168 (0.050) −0.059 (0.055) 0.448 (0.085)

1 −1.643 (0.137) −0.275 (0.086) 0.206 (0.075) 0.359 (0.085) 0.744 (0.141)

2 0.840 (0.085) 0.066 (0.056) −0.127 (0.048) −0.022 (0.054) −0.047 (0.084)

4 −2.102 (0.075) 0.291 (0.042) −0.037 (0.034) −0.395 (0.040) 1.812 (0.076)

5 −3.836 (0.171) −0.391 (0.087) 0.015 (0.072) 0.444 (0.083) 3.787 (0.186)

Panel C: GEO

−4 4.668 (0.129) 0.717 (0.071) −0.012 (0.059) −0.421 (0.071) −3.923 (0.167)

−3 2.407 (0.102) −0.537 (0.052) 0.015 (0.043) 0.308 (0.050) −3.759 (0.105)

−2 −0.068 (0.115) −0.039 (0.075) −0.130 (0.065) −0.173 (0.074) 0.375 (0.118)

−1 −1.090 (0.092) −0.022 (0.060) −0.091 (0.052) 0.119 (0.059) 0.323 (0.098)

1 0.275 (0.118) 0.076 (0.076) 0.127 (0.064) 0.545 (0.075) −0.229 (0.118)

2 1.057 (0.093) 0.229 (0.062) −0.094 (0.053) −0.068 (0.062) 0.034 (0.098)

4 −2.102 (0.092) 0.429 (0.050) 0.045 (0.042) −0.368 (0.052) 2.027 (0.098)

5 −3.366 (0.135) −0.429 (0.072) −0.016 (0.061) 0.287 (0.073) 2.963 (0.158)

parameters averaged across the B simulations:

RMSE(θ̂τ ) =
√
√
√
√ 1

B

B∑

b=1

(θ̂
(b)
τ − θτ )2. (30)

To assess the first and second queries of this simulation exer-
cise, Tables 1 and 2 report the ARB and RMSE for the
state-specific coefficients β1 and β2. As can be noted, the
proposed model under the Normal and Student t error distri-
butions is able to recover the true state-dependent parameters
for both low and high degree of dependence and all three con-
sidered SDs. Not surprisingly, the bias effect is quite small
when we analyze the median levels (see column 3). As the
quantile levels become more extreme (see columns 1, 2, 4
and 5), the ARB slightly increases but it still remains reason-
ably small. Also, under the (T ) scenario the heavier tails of
the Student t contribute to higher ARB and RMSE especially
at the 10-th and 90-th percentiles.

To evaluate the classification performance of the proposed
model, we report the average Adjusted Rand Index (ARI)
of Hubert and Arabie 1985 and the misclassification rate
(MCR). Specifically, we compare the classification obtained
by the QHSMM with the one obtained from a QHMM
under the assumption of a geometric SD. The state partition
provided by the fitted models is obtained by taking the maxi-
mum, max

k∈S
γtk , posteriori probability for every t = 1, . . . , T .

The results in Table 3 show that when the true SD of the
data generating process is geometric, the QHMM provides a
slightly better classification both in terms of ARI and MCR
(please compare the GEO row of Panel A with that of Panel
C and the GEO row of Panel B with that of Panel D). This
is not surprising as the QHMM implicitly assumes geomet-
rically distributed sojourn distributions. The QHSMM, on
the contrary, outperforms the QHMM in all other cases, as
it can approximate arbitrarily well any SD and does not rely
on a distributional assumption for dk(u) (compare the SPO
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Table 3 Average and standard
deviation (in brackets) values of
the ARI and MCR for the
QHSMM and QHMM under the
three considered SDs and two
distributions for the error term

SD τ

(0.10, 0.10) (0.25, 0.25) (0.50, 0.50) (0.75, 0.75) (0.90, 0.90)

ARI MCR ARI MCR ARI MCR ARI MCR ARI MCR

QHSMM

Panel A: N
SPO 0.905 0.024 0.908 0.023 0.908 0.023 0.909 0.023 0.907 0.024

(0.022) (0.006) (0.021) (0.006) (0.021) (0.006) (0.021) (0.005) (0.022) (0.006)

SNB 0.852 0.037 0.857 0.036 0.855 0.036 0.856 0.036 0.853 0.037

(0.026) (0.007) (0.026) (0.007) (0.026) (0.007) (0.026) (0.007) (0.026) (0.007)

GEO 0.783 0.057 0.785 0.057 0.783 0.057 0.783 0.057 0.782 0.058

(0.028) (0.008) (0.029) (0.008) (0.028) (0.008) (0.029) (0.008) (0.028) (0.008)

Panel B: T
SPO 0.874 0.032 0.885 0.030 0.885 0.029 0.885 0.029 0.876 0.032

(0.029) (0.008) (0.023) (0.006) (0.023) (0.006) (0.023) (0.006) (0.025) (0.007)

SNB 0.810 0.048 0.824 0.045 0.824 0.045 0.824 0.045 0.811 0.048

(0.030) (0.008) (0.028) (0.008) (0.028) (0.008) (0.029) (0.008) (0.031) (0.008)

GEO 0.737 0.071 0.745 0.068 0.744 0.069 0.743 0.069 0.735 0.071

(0.031) (0.009) (0.031) (0.009) (0.031) (0.009) (0.031) (0.009) (0.031) (0.009)

QHMM

Panel C: N
SPO 0.895 0.027 0.904 0.024 0.909 0.023 0.907 0.024 0.900 0.025

(0.022) (0.006) (0.021) (0.005) (0.020) (0.005) (0.020) (0.005) (0.021) (0.005)

SNB 0.850 0.038 0.856 0.036 0.861 0.035 0.857 0.036 0.851 0.037

(0.026) (0.007) (0.025) (0.007) (0.025) (0.006) (0.025) (0.007) (0.026) (0.007)

GEO 0.799 0.053 0.802 0.052 0.804 0.052 0.802 0.052 0.798 0.053

(0.026) (0.007) (0.026) (0.007) (0.026) (0.007) (0.027) (0.007) (0.027) (0.008)

Panel D: T
SPO 0.856 0.037 0.874 0.032 0.883 0.030 0.876 0.032 0.858 0.037

(0.026) (0.007) (0.024) (0.006) (0.023) (0.006) (0.023) (0.006) (0.026) (0.007)

SNB 0.803 0.050 0.820 0.046 0.830 0.043 0.822 0.045 0.806 0.049

(0.029) (0.008) (0.027) (0.007) (0.026) (0.007) (0.027) (0.007) (0.029) (0.008)

GEO 0.752 0.066 0.762 0.063 0.768 0.062 0.763 0.063 0.752 0.066

(0.030) (0.009) (0.030) (0.008) (0.029) (0.008) (0.030) (0.008) (0.029) (0.008)

and SNB rows of Panel A with those of Panel C, and the
SPO and SNB rows of Panel B with those of Panel D), with
very few exceptions at quantile levels τ = (0.50, 0.50) and
τ = (0.75, 0.75) where the two models give comparable
results.

We further evaluate the QHSMM introduced when a
nonlinear quantile regression function of Y given X is con-
sidered. Similarly to Geraci (2019), the observations are
generated from a two state HSMM using the following non-
linear quantile regression models. In the first scenario, we
simulated the data from the following logistic model:

Y ( j)
t = β1, jk

1 + exp((β2, jk − Xt )/β3, jk)
+ ε

( j)
tk , for j = 1, 2,

(31)

where the explanatory variable is drawn from a continuous
uniform distribution, Xt ∼ U(0, 20), and where Y ( j)

t and
ε
( j)
tk denote the j-th component of Yt and εtk , respectively.
For each component j and hidden state k, the true values of
the parameters, β jk , are given by β11 = (50, 12, 3), β21 =
(10, 2,−1), β12 = (30, 5, 2) and β22 = (20, 11,−3).

In the second scenario, following El Ghouch and Genton
(2009) the data are generated according to the equation:

Y ( j)
t = β1, jk + β2, jk X

2
t + β3, jk X

3
t

+γ j exp(−4(Xt − 1)2) + ε
( j)
tk , for j = 1, 2,

(32)

where Xt ∼ U(−1.1, 2.1) and where the parameter γ j in
(32) can be seen as a misspecification parameter that con-
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trols the deviation from the polynomial function. As γ j

increases, the data structure becomes more complicated,
and approximating the true curve by a polynomial becomes
increasingly difficult. In this study we chose γ1 = 4 and
γ2 = 8. The true values of the parameters are given by β11 =
(10,−6, 2.8), β21 = (3, 5,−0.5), β12 = (−3, 5,−2) and
β22 = (8, 11,−3).

For the error terms εtk in (31) and (32), and the SDs we
considered the same distributions adopted for the linear case.
Examples of the simulated data are shown in Figures 1 and
2 from the two scenarios, respectively.

We fit the proposed QHSMM for five quantile levels, i.e.,
τ = (0.10, 0.10), τ = (0.25, 0.25), τ = (0.50, 0.50), τ =
(0.75, 0.75) and τ = (0.90, 0.90). For eachmodel, we report
the Proportion of Negative Residuals (PNR):

PN R(τ j ) = 1

T

T∑

t=1

1
(
Y ( j)
t < Q̂

Y ( j)
t |Xt

)
, for j = 1, 2,

(33)

with Q̂
Y ( j)
t |Xt

being the fitted conditional quantile of Y ( j)
t at

level τ j , j = 1, 2. If the model is correctly specified, the
PNR should be approximately equal to τ j for each outcome.
The results contained in Tables 4 and 5 are averaged over
B = 1000 Monte Carlo replications.

By looking at the results, PNR rates are in general coher-
ent with the selected quantile level. Further, one can observe
that PNRs are typically closer to the nominal values τ in
the first scenario as opposed to the second one. This may be
explained by the fact that the fitted model provides a better
linear approximation of the true logistic quantile regression
function than the more complex nonlinear model in the sec-
ond scenario.Moreover, in this latter case, the PNRs obtained
for the second component Y2 do worse than the correspond-
ing ones for Y1, which is mainly due to the relatively larger
variance associated to the misspecification parameter γ j in
(32). Overall, in both cases the PNRs are slightly, espe-
cially at the tails, below (at τ = (0.10, 0.10)) or above (at
τ = (0.90, 0.90)) the expected proportions.

Finally, to assess the performance of penalized likelihood
criteria (AIC, BIC and ICL) for selecting the number of hid-
den states and maximum sojourn times, we considered the
same simulation experiment where the sojourns are gener-
ated from a beta-binomial distribution:

dk(u) =
(
Uk

u

)B(u + αk,U − u + λk)

B(αk, λk)
, u = 1, 2, . . . ,Uk,

(34)

where B(·, ·) is the beta function, α1 = 6, α2 = 0.7, λ1 = 3,
λ2 = 2, U1 = 20 and U2 = 10. For each of the simulated
B = 100 datasets, we fit the QHSMM with K = 2, 3, 4

over the grid of state-dependent maximum sojourn times
(10, 15, 20)×· · ·×(10, 15, 20), and select the best combina-
tion of (K ,U) associated to the lowest penalized likelihood
criteria. Table 6 reports the number of times each criterion
correctly identifies the number of latent states and maximum
support points of the SDs (Panel A) and the absolute fre-
quency distributions of the selected K for each of the three
criteria (Panel B).

As one can see in Panel A, all three criteria work rela-
tively well at τ = (0.50, 0.50). By contrast, as we move
towards the tails of the distribution of the responses, the ICL
outperforms both the AIC and BIC and correctly identifies
the pair (K ,U) that was used to generate the data more than
96% across all simulation scenarios. Moving onto Panel B,
the AIC consistently performs worse than the BIC but both
mostly overestimate the true number of states. These results
suggest that regardless of the distribution on the error terms
and SDs, the ICL yields superior performance and captures
serial heterogeneity in the data in a more parsimonious man-
ner compared to the other criteria, easing the interpretation
of the latent states.

5 Application

In this section we apply the proposed methodology to air
pollution data collected by the Lazio Regional Agency for
Environmental Prevention and Protection (ARPA Lazio,
https://www.arpalazio.it) in Italy. The ARPA Lazio provides
information regarding the regional state of the environment
and environmental trends, performing scientific, technical
and research functions as well as assessment, monitoring,
control and supporting local and health authorities. The time
series used in this research are freely available from the
ARPA Lazio website (https://www.arpalazio.net/main/aria/
sci/basedati/chimici/chimici.php).

5.1 Data description

The data considered originate from a regional monitoring
network system developed by the Lazio Region and have
already been discussed in the work of Maruotti et al. (2017).
This system has been organized in order to respond to the
increasing demand for environmental information, but also
for providing reliable data suitable for policy-related aspects.
The network recorded concentrations of nine air pollutants
on hourly basis at monitoring stations in the central area of
the city of Rieti, Italy. The Rieti site has been chosen as it
is classified as a traffic location, although it is located at a
short distance from green areas and forests that facilitate the
movement of air masses and removal of pollutants. In this
work we consider three major air pollutants, i.e., Particulate
Matter with aerodynamic diameter less than 2.5 μm (PM25),
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Fig. 1 Examples of data
generated from the first scenario.
Scatterplot of Y1 (first column)
and Y2 (second column) under
normal (first row) and Student t
(second row) errors as a function
of the included covariate, when
using shifted-Poisson SDs. Red
and blue data points distinguish
the two latent states

Fig. 2 Examples of data
generated from the second
scenario. Scatterplot of Y1 (first
column) and Y2 (second
column) under normal (first
row) and Student t (second row)
errors as a function of the
included covariate, when using
shifted-Poisson SDs. Red and
blue data points distinguish the
two latent states
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Table 4 Average and standard deviation (in brackets) values of the PNR for Y1 and Y2 under the considered SDs and error term distributions for
the first scenario over 1000 samples

PNR τ

(0.10, 0.10) (0.25, 0.25) (0.50, 0.50) (0.75, 0.75) (0.90, 0.90)

Panel A: N
SPO 0.096 0.083 0.265 0.233 0.497 0.504 0.751 0.769 0.920 0.912

(0.005) (0.004) (0.008) (0.007) (0.007) (0.008) (0.006) (0.006) (0.005) (0.004)

SNB 0.091 0.079 0.251 0.224 0.492 0.501 0.750 0.770 0.918 0.911

(0.007) (0.006) (0.010) (0.009) (0.012) (0.014) (0.007) (0.006) (0.005) (0.004)

GEO 0.088 0.076 0.246 0.231 0.499 0.502 0.753 0.769 0.920 0.913

(0.008) (0.006) (0.012) (0.017) (0.007) (0.008) (0.007) (0.006) (0.004) (0.005)

Panel B: T
SPO 0.097 0.080 0.266 0.232 0.498 0.502 0.750 0.768 0.918 0.914

(0.006) (0.004) (0.007) (0.007) (0.007) (0.008) (0.007) (0.006) (0.005) (0.004)

SNB 0.089 0.080 0.256 0.224 0.495 0.502 0.750 0.768 0.917 0.912

(0.006) (0.005) (0.011) (0.010) (0.010) (0.012) (0.007) (0.006) (0.005) (0.004)

GEO 0.095 0.080 0.249 0.231 0.500 0.500 0.752 0.769 0.918 0.914

(0.008) (0.005) (0.014) (0.017) (0.007) (0.009) (0.007) (0.006) (0.004) (0.005)

Table 5 Average and standard deviation (in brackets) values of the PNR for Y1 and Y2 under the considered SDs and error term distributions for
the second scenario over 1000 samples

PNR τ

(0.10, 0.10) (0.25, 0.25) (0.50, 0.50) (0.75, 0.75) (0.90, 0.90)

Panel A: N
SPO 0.095 0.090 0.249 0.239 0.479 0.482 0.743 0.760 0.907 0.923

(0.010) (0.017) (0.007) (0.007) (0.008) (0.008) (0.008) (0.008) (0.033) (0.011)

SNB 0.090 0.083 0.250 0.239 0.479 0.481 0.742 0.758 0.922 0.926

(0.008) (0.013) (0.006) (0.006) (0.008) (0.008) (0.008) (0.008) (0.024) (0.009)

GEO 0.092 0.084 0.251 0.238 0.486 0.483 0.742 0.758 0.909 0.926

(0.008) (0.014) (0.006) (0.006) (0.008) (0.009) (0.008) (0.008) (0.042) (0.011)

Panel B: T
SPO 0.090 0.082 0.254 0.245 0.483 0.485 0.746 0.756 0.933 0.926

(0.009) (0.015) (0.006) (0.007) (0.008) (0.008) (0.008) (0.008) (0.012) (0.009)

SNB 0.088 0.079 0.254 0.244 0.482 0.484 0.745 0.754 0.935 0.925

(0.008) (0.012) (0.006) (0.007) (0.008) (0.008) (0.008) (0.007) (0.011) (0.009)

GEO 0.090 0.080 0.254 0.243 0.487 0.485 0.745 0.755 0.923 0.924

(0.008) (0.012) (0.006) (0.007) (0.008) (0.008) (0.008) (0.007) (0.031) (0.011)

Ozone (O3) and Nitrogen Dioxide (NO2) from January 01,
2019 to June 14, 2021.Weaveraged the pollution data to daily
frequency and all concentrations are expressed in μg/m3.

Atmospheric variables also play a major role in deter-
mining the level of exposure to particular pollutants and
capturing time dependence as proxies for seasonal variations
and characteristics. Since pollution episodes are triggered by
specific atmospheric factors, we include the following vari-
ables, namely the daily average wind speed, temperature,
pressure and humidity. Table 7 presents the main descriptive

statistics for the response variables and the set of included
predictors. The asymmetry in the distributions of the pollu-
tants is noted by examining the mean-median relationship
and the five summary statistics indicate severe departures
from the Gaussian assumptions, presenting high kurtosis and
outlying values. In the same table we also report the empir-
ical correlation coefficients between each response variable
which clearly highlight a positive correlation between PM25

and NO2, and a negative association with O3. Therefore, the
dependence structure among different pollutants, which can-
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Table 6 Number of correctly
identified hidden states K and
maximum sojourn times U
(Panel A) and absolute
frequency distribution of the
selected number of states (Panel
B) under Normal and Student t
errors over 100 replications

τ

(0.10, 0.10) (0.25, 0.25) (0.50, 0.50) (0.75, 0.75) (0.90, 0.90)

AIC BIC ICL AIC BIC ICL AIC BIC ICL AIC BIC ICL AIC BIC ICL

Panel A

N 0 1 100 0 54 99 30 98 99 0 61 100 0 2 99

T 0 0 82 0 27 97 72 86 97 0 22 97 0 0 92

Panel B

Panel B.1: N
2 0 1 100 0 56 100 30 99 99 0 62 100 0 2 100

3 0 70 0 0 44 0 4 1 1 0 38 0 0 80 0

4 100 29 0 100 0 0 66 0 0 100 0 0 100 18 0

Panel B.2: T
2 0 0 88 0 32 100 72 99 100 0 28 100 0 0 98

3 0 15 11 1 68 0 13 1 0 0 72 0 0 56 2

4 100 85 1 99 0 0 15 0 0 100 0 0 100 44 0

Table 7 Summary statistics of
the sample data

Variable Minimum 1st quartile Median Mean 3rd quartile Maximum

PM25 0 6 9 11.846 15 63

O3 7 31 49 46.340 61 94

NO2 0 8 12 14.139 20 44

Wind Speed 0 6 8 8.839 11 29

Temperature 0 11 16 16.659 22 34

Pressure 989 1011 1015 1015.127 1020 1036

Humidity 17 42 56 58.415 74 100

Correlation matrix

PM25 O3 NO2

PM25 1

O3 −0.566 1

NO2 0.743 −0.656 1

Fig. 3 From left to right, univariate normal QQ plots for PM25, O3 and NO2
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not be detected by univariate methods, constitutes a crucial
aspect of the analysis and should not be neglected.

From a graphical standpoint, Fig. 3 shows the normal QQ
plots for the PM25, O3 and NO2 time series. These reveal
the presence of potentially influential observations in the
data, heavy tails and skewness for all three outcomes. This
exploratory analysis and preliminary considerations moti-
vate us to consider a joint quantile regression approach as
investigative tool.

5.2 Results

We jointly model the concentrations of PM25, O3 and NO2

as a function of Wind Speed, Temperature, Pressure and
Humidity at quantile levels τ = (0.50, 0.50, 0.50), τ =
(0.75, 0.75, 0.75) and τ = (0.90, 0.90, 0.90). Considering
the 75-th and 90-th percentiles puts emphasis on alert thresh-
olds for ambient air pollution associated with high levels of
concentrations of chemicals. As a first step of the analysis, we
fit the proposedQHSMMfor a sequence of states K from 1 to
6 and a K -dimensional grid, U ⊂ R

K≥0, of maximum sojourn
times, (10, 15, . . . , 60)×· · ·×(10, 15, . . . , 60). To select the
optimal combination of K and U, with U ∈ U , and avoid the
computational cost of a full grid search over U , we employ
the greedy search algorithm described in Sect. 3.2 with 200
starting points. Table 8 reports the log-likelihood, AIC, BIC
and ICL values for the fitted models at the investigated quan-
tile levels. TheAIC selects K = 5 states for all quantile levels
meanwhile the BIC and ICL aremore aligned in the choice of
K as they identify 3, 5and4 states forτ = (0.50, 0.50, 0.50),
τ = (0.75, 0.75, 0.75) and τ = (0.90, 0.90, 0.90). This
is not surprising since the AIC tends to overestimate the
number of hidden states and, for this reason, we will not
consider it hereafter. We can also see that the ICL values
associated to K = 3 and K = 5 are extremely similar at
τ = (0.75, 0.75, 0.75). Following these considerations and
looking at Table 8, we select the best fitted models with K
equal to 3, 3 and 4 according to both the BIC and ICL cri-
teria at τ = (0.50, 0.50, 0.50), τ = (0.75, 0.75, 0.75) and
τ = (0.90, 0.90, 0.90), respectively.

Figures 4, 5 and 6 report the classification results accord-
ing to the selected models at the investigated quantile levels.
Each plot shows the data points colored according to the esti-
mated posterior probability of class membership, γ̂tk , with
the vertical lines separating blocks of four months. In our
study, the latent components can be associated to specific
exposure regimes characterized by seasonal weather condi-
tions. Specifically, blue points (state 2) tend to cluster days
in late autumn, winter, and early spring, while green ones
(state 3) are generally inferred during late spring and sum-
mer. At τ = (0.90, 0.90, 0.90) (see Figure 6), the four state
QHSMM identifies a similar classification patternwith violet
points (state 4) occurring mainly from spring until the end of

Fig. 4 Time series classified according to their estimated posterior
probability of class membership at τ = (0.50, 0.50, 0.50). Vertical
lines separate blocks of four months

Fig. 5 Time series classified according to their estimated posterior
probability of class membership at τ = (0.75, 0.75, 0.75). Vertical
lines separate blocks of four months

summer, but also sporadically during the rest of the year. The
overall results reflect the seasonal variation in atmospheric
pollutants,with high concentrations of PM25 andNO2 inwin-
ter and high O3 concentrations in summer and warmmonths.
It is also worth noting that the minimum values of particu-
late matter and nitrogen dioxide, and the maximum level of
ozone were reached in state 1 (orange dots) during the period
March-June 2020. These sudden changes may be possibly
due to the implementation of lockdown measures to contain
the COVID-19 outbreak in Italy (Bassani et al. 2021; Putaud
et al. 2021). Indeed, in the first weeks of March, signifi-
cant PM25 and NO2 declines were observed which led to O3

peaks resulting from reduced titration with nitrogen oxides.
As restrictions were lifted in May-June, chemical concentra-
tions settled again around the 2019 and early 2021 levels.
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Fig. 6 Time series classified according to their estimated posterior
probability of class membership at τ = (0.90, 0.90, 0.90). Vertical
lines separate blocks of four months

The estimated transition probability matrices of the latent
semi-Markov chain (see Table 9) confirm that pollutant con-
centrations alternate between good and poor air conditions.
The off-diagonal elements demonstrate that the hidden pro-
cess stays in state 3 (low levels of particulate matter, nitrogen
dioxide and moderate levels of ozone), and 4 in the case
τ = (0.90, 0.90, 0.90), with temporary changes towards
more severe PM25 and NO2 concentrations (state 2) or
higher ozone episodes (state 1). Meanwhile, direct transi-
tions between states 1 and 2 are very unlikely at all three
quantile levels.

Taking the effect of covariates into account, Table 10
shows the estimated state-specific regression parameters,
βk, k = 1, . . . , K , at each quantile level, respectively. Stan-
dard errors are computed via parametric bootstrap using
H = 1000 resamples as illustrated in Section 3 and point

estimates are displayed in boldface when significant at the
standard 5% level.

The estimated effects of the included covariates tend to be
nonlinear, state-specific and are generally more pronounced
in the upper end of the distribution of the responses. States 1
and 3 yield similar estimates as they are both associated with
the best air conditions, especially when looking at effect of
pressure and humidity. This is in sharp contrast with the point
estimates in state 2 which is characterized by hazardous air
quality. Among the four factors, wind speed and tempera-
ture exert the strongest influence on the considered pollutants
in all seasons. In particular, PM25 and NO2 are negatively
associated with both variables and such association increases
during the coldest months of the year. Wind intensity, there-
fore, contributes considerably to the reduction of pollution,
in particular in at-risk situations as identified by state 2. On
the other hand, O3 concentration is positively associatedwith
wind speed meanwhile the effect of temperature is positive
in late-spring and hot weather, but negative throughout the
rest of the year. Humidity can also help to decrease ozone
pollution because the moisture in the air could enhance the
condensation of water and slow down ozone production, but
also reduce PM25 and NO2. Further, the concentrations of
PM25 and NO2 are positively associated with atmospheric
pressure and negatively associated with O3.

We conclude the analysis by reporting the estimated cor-
relation matrices, �k, k = 1, . . . , K , (see Table 11) in order
to provide an indirect measure of tail dependence between
the outcomes. Firstly, regardless of the state, the correla-
tion coefficients between the air pollutants are generally
significant, indicating that in this case fitting univariate quan-
tile regressions separately would be inappropriate. Secondly,
the correlation coefficients are increasing somewhat with τ .
Finally, the estimates depict a data correlation structure that
varies among the latent groups as the correlation between

Table 9 Estimated transition
probabilities for different
quantile levels

states 1 2 3 4

Panel A: (0.50, 0.50, 0.50)

1 0 0.028 (0.009) 0.972 (0.009)

2 0.000 (0.001) 0 1.000 (0.001)

3 0.836 (0.020) 0.164 (0.020) 0

Panel B: (0.75, 0.75, 0.75)

1 0 0.000 (0.007) 1.000 (0.007)

2 0.000 (0.000) 0 1.000 (0.000)

3 0.543 (0.030) 0.457 (0.030) 0

Panel C: (0.90, 0.90, 0.90)

1 0 0.000 (0.000) 0.000 (0.009) 1.000 (0.009)

2 0.000 (0.000) 0 0.966 (0.014) 0.034 (0.014)

3 0.016 (0.007) 0.482 (0.029) 0 0.502 (0.030)

4 0.088 (0.025) 0.097 (0.021) 0.815 (0.032) 0
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Table 11 Estimated state-dependent correlation matrices for different quantile levels. Point estimates are displayed in boldface when significant at
the standard 5% level

States k = 1 k = 2 k = 3 k = 4

PM25 O3 NO2 PM25 O3 NO2 PM25 O3 NO2 PM25 O3 NO2

Panel A: (0.50, 0.50, 0.50)

PM25 1 1 1

O3 0.098 1 −0.226 1 0.031 1

(0.062) (0.154) (0.057)

NO2 0.224 −0.246 1 0.512 −0.344 1 0.391 −0.020 1

(0.063) (0.061) (0.116) (0.137) (0.047) (0.056)

Panel B: (0.75, 0.75, 0.75)

PM25 1 1 1

O3 0.206 1 −0.024 1 0.170 1

(0.077) (0.095) (0.056)

NO2 0.199 −0.422 1 0.586 −0.142 1 0.385 −0.021 1

(0.084) (0.082) (0.061) (0.097) (0.050) (0.061)

Panel C: (0.90, 0.90, 0.90)

PM25 1 1 1 1

O3 0.151 1 −0.361 1 0.133 1 −0.018 1

(0.193) (0.121) (0.076) (0.094)

NO2 0.385 −0.591 1 0.202 −0.749 1 0.078 −0.230 1 0.186 −0.395 1

(0.182) (0.203) (0.077) (0.190) (0.077) (0.095) (0.089) (0.114)

PM25, O3 and NO2 in the wintertime is substantially higher
than that in spring and summer.

6 Conclusion

The study of pollution exposure is at the heart of policy atten-
tion for health and economics welfare analysis. Motivated
the necessity to develop sound policies for controlling air
contaminants emissions, this paper extends the joint quantile
regression of Petrella and Raponi (2019) by introducing a
hidden semi-Markov quantile regression for the analysis of
multiple pollutants time series. The proposed model allows
to capture quantile-specific effects across the entire distribu-
tion of several outcomes in one step and infer cluster-specific
covariate effects at various quantile levels of interest. In order
to avoidmaking biased inference related to incorrect distribu-
tional assumptions about the SDs, we adopt the approach of
Guédon (2003)where the latent sojourn densities are approx-
imated by using nonparametric discrete distributions and
estimated directly from the data. Using simulation exercises,
the proposed approach reveals promising results in reducing
state misclassification rates with respect to HMMs and iden-
tifying the correct number of hidden states. In the empirical
application, we employ our methodology to jointly model
daily PM25, O3 and NO2 concentrations recorded in Rieti
(Italy) as a function of wind speed, temperature, pressure

and humidity. We find that seasonal changes in air pollu-
tant concentrations are greatly affected by meteorological
conditions, whose effects are generally amplified at the top
end of the distribution of the responses. Moreover, the latent
regimes capture seasonal variations in air pollution particles
that characterize low and hazardous contamination levels.

This work could be extended further in the following
directions. In particular, the method proposed could be pos-
itively applied to financial time series modeling. Indeed,
financial returns often exhibit empirical characteristics, such
as skewness, leptokurtosis, heteroscedasticity and clustering
behavior over time, which are heavily influenced by hidden
variables (e.g., the state of the market) during tranquil and
crisis periods (Maruotti et al. 2021). In this context, time
dependence can be further included in the regression model,
allowing the quantile to vary over time according to an autore-
gressive process (Engle and Manganelli 2004).

The approach introduced might also be extended to other
settings and data structures. Firstly, our QHSMM can be
generalized to multivariate longitudinal data, extending the
recent quantile mixed HMM in Merlo et al. (2022) by using
more flexible sojourn distributions and, possibly, allowing
the semi-Markov chain parameters to depend on observ-
able covariates. Secondly, another extension would deal
with the inclusion of spatial heterogeneity into the model-
ing approach to account for spatial-temporal variations of air
pollutants fromdifferentmonitoring sites. Lastly,while in the
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application we focused on daily concentrations of three air
pollutants, in high-dimensional settings with a larger num-
ber of response variables and/or number of hidden states, the
introduced QHSMM can be easily over-parameterized. This
often occurs because of the large number of unique param-
eters in the covariance matrices to be estimated, implying a
loss in terms of interpretability as well as numerically ill-
conditioned estimators. In these cases, following Maruotti
et al. (2017), we may consider a class of parsimonious
HSMMs by imposing a factor decomposition on the state-
specific covariance matrices. Not only would this modeling
strategy provide information about the dependence between
pollutants, but also a clear interpretation of the latent associ-
ation structure among them.

Supplementary Materials

The SupplementaryMaterials include additional simulations
that are used to support the results in the manuscript when
the number of analyzed response variables p increases.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-022-10130-
1.
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Appendix

Proof of Proposition 1 Firstly, we note that to ensure iden-
tifiability of the MAL density in (5) it suffices to apply
Proposition 1 of Petrella and Raponi (2019). Secondly, for a
general HSMM, identifiability has been proven up to label
switching (Leroux 1992). Thus, to ensure identifiability, all
one needs to prove is the identifiability of the marginal
mixtures (Dannemann et al. 2014), which in our case are
represented by the finite mixtures of MAL distributions.
Based on the work of Holzmann et al. (2006), Browne and
McNicholas (2015) prove identifiability of finite mixtures of
multivariate generalized hyperbolic distributions. Since the
MAL in (5) is a limiting case of the multivariate general-
ized hyperbolic distribution (see (3) and (4) in Browne and
McNicholas (2015) with λ = 1, ψ = 2 and χ → 0), model
identifiability follows by applyingCorollary 2 ofBrowne and
McNicholas (2015).

Proof of Proposition 2 The E-step of the EM algorithm con-
siders the conditional expectation of the complete log-

likelihood function in (8) given the observed data and the

current parameter estimates 	̂
(r−1)
τ . At first, we recall that

under the constraints imposed on ξ̃ and�, the representation
in (7) implies that:

Y | l̃ = c̃ ∼ Np(μ + Dξ̃ c̃ , c̃D�D), C̃ ∼ Exp(1). (35)

This means that the joint density function of Y and C̃ is:

fY,C̃ (y, c̃) =
exp

{
(y − μ)′D−1�−1ξ̃

}

(2π)p/2 | D�D |1/2
(

c̃−p/2 exp

{

−1

2

m̃

c̃
− 1

2
c̃(d̃ + 2)

})

. (36)

By substituting (36) in (8) and taking the conditional expecta-
tion of the logarithm of (8), we obtain the expected complete
log-likelihood function in (13).

To compute the conditional expectation of c̃tk and z̃tk in
(13), C̃ is treated as an additional latent variable. Using the
joint distribution of Y and C̃ derived in (36) and the MAL
density of Y given in (5), we have that:

fC̃ (C̃ | Y = y) = fC̃,Y(c̃, y)

fY(y)

=
c̃−p/2

(
2+d̃
m̃

)ν/2
exp

{
− m̃

2c̃ − c̃(2+d̃)
2

}

2Kν

(√

(2 + d̃)m̃

) , (37)

which corresponds to a Generalized Inverse Gaussian (GIG)
distribution with parameters ν, 2 + d̃, m̃i , i.e.1

fC̃ (C̃ | Y = y) ∼ GIG
(
ν, d̃ + 2, m̃

)
. (38)

Then, it follows that

E[C̃ | ·] =
( ˆ̃m
2 + ˆ̃d

) 1
2 Kν+1

(√

(2 + ˆ̃d) ˆ̃m
)

Kν

(√

(2 + ˆ̃d) ˆ̃m
) (39)

and

E[C̃−1 | ·] =
⎛

⎝2 + ˆ̃d
ˆ̃m

⎞

⎠

1
2 Kν+1

(√

(2 + ˆ̃d) ˆ̃m
)

Kν

(√

(2 + ˆ̃d) ˆ̃m
) − 2ν

ˆ̃m . (40)

1 The pdf of a GIG(p, a, b) distribution is defined as

fG IG(x; p, a, b) = ( a
b )

p/2

2Kp(
√
ab)

x p−1e− 1
2

(
ax+bx−1)

, with a > 0, b > 0

and p ∈ R.
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Denoting the two conditional expectations in (39) and (40)
by ˆ̃c and ˆ̃z respectively, concludes the proof.

Proof of Proposition 3 Imposing the first order conditions on
(13) with respect to each component of the set 	τ , gives
the update estimates in (16), (17), (18) and (19). However,
there is not closed formula solution to update the elements of
the scale matrixD j ; hence, the M-step update requires using
numerical optimization techniques to maximize (13). A con-
siderable disadvantage of this procedure is the necessary high
computational effort which could be very time-consuming.
For this reason, we utilize a simpler estimator for the scale
parameters δ jk, k = 1, . . . , p, which follows directly from
the fact that all marginals of the MAL distribution are uni-
variate AL distributions (see Yu and Zhang 2005):

δ̂ jk = 1

T

T∑

t=1

γ̂t jρτ (Y
(k)
t − μ̂t jk), (41)

where μ̂t jk is the k-th element of the vector μ̂t j .
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